Как сделать стробоскоп из светодиодов. Стробоскопы для авто своими руками

Стробоскопическое изображение отскакивающего мяча, снятое с частотой 25 кадров в секунду.

Диск электрофона (на который укладывается грампластинка)

не вращается. По краю диска нанесены ряды меток: верхний ряд — для грампластинок на 45 об/мин, нижний — для грампластинок на 33⅓ об/мин.

Диск электрофона вращается со скоростью 33⅓ об/мин. Верхний ряд меток «размыт», нижние метки кажутся неподвижными. Метки подсвечиваются неоновой лампой, питающейся переменным током с частотой 50 Герц.

Диск электрофона вращается со скоростью 45 об/мин. Нижний ряд меток «размыт», верхние метки кажутся неподвижными.

Стробоско́п

(от греч. στρόβος — «кружение», «беспорядочное движение» и σκοπέω — «смотрю») — прибор, позволяющий быстро воспроизводить повторяющиеся яркие световые импульсы.

Стробоскопом также назывался прибор для демонстрации движущихся рисунков, изобретённый в 1832 году учёным Жозефом Плато.

Современный стробоскоп часто используется на вечеринках, дискотеках и концертах.

Музыкальный стробоскоп — один из вариантов светодинамической установки для дискотеки, использующий вспышки с разной частотой импульсной лампы.

Также стробоскоп — прибор для наблюдения быстрых периодических движений, действие которого основано на стробоскопическом эффекте.

Что такое стробоскоп

Стробоскопом называют прибор для наблюдения объектов, совершающих быстрые периодически повторяющиеся движения. Для этого он освещает движущийся объект яркими вспышками света, повторяющимися с частотой равной частоте движения этого объекта. При таком освещении движущийся объект кажется неподвижным. В двигателе авто с помощью стробоскопа можно определить величину угла опережения зажигания. Для этого нужно синхронизировать вспышки импульсами зажигания в первом цилиндре, а свет направлять на метки ВМТ и установки момента опережения зажигания, освещая и шкив коленвала с риской.

Стробоскопы заводского изготовления в качестве излучателя световых вспышек обычно имеют безынерционную импульсную лампу, позволяющую сделать настройки угла опережения зажигания даже в условиях яркого солнечного освещения. Однако она имеет небольшой срок службы и не всегда бывает в продаже. Поэтому с появлением светодиодов силой света более 2000 мкд при изготовлении стробоскопа своими руками стало удобнее пользоваться ими. Чтобы убедить в значительности превосходства параметров светового потока новых светодиодов, напомним, что у АЛ307 при том же потребляемом токе сила света составляет всего 10–16 мкд. (схема к видеоматерилам в описании под видео)

Материалы

Предлагаемая для изготовления своими руками схема стробоскопа проста и не требует сложной настройки. Чтобы сделать простой стробоскоп для корректировки момента опережения зажигания своими руками, понадобятся следующие инструменты, детали и материалы:

  1. Карманный фонарик с достаточно большим отсеком для батареек.
  2. Светодиоды КИПД21П-К – 9 шт.
  3. Микросхема К561ТМ2 (два двухступенчатых D-триггера). Российские аналоги: К176ТМ2, 564ТМ2; импортный аналог – CD4013/HEF4013.
  4. Транзистор КТ315Б – 2 шт. (VT1, VT2); КТ815А – 1шт. (VT3).
  5. Подстроечный резистор СПЗ-196 или СП5-1 сопротивлением 33 кОм.
  6. Постоянные резисторы 5,1 Ом – 3 шт., 3 кОм – 1 шт., 15 кОм – 1 шт., 20 кОм – 2 шт., 330 кОм – 1 шт., мощностью не менее 0,125 Вт.
  7. Диод КД213 или любой другой средней мощности с U обр. макс не менее 16 В.
  8. Неполярные конденсаторы КМ-5, К73-9 или другие. С1 должен быть рабочим напряжением не менее 200 В остальные не меньше 16 В. 0,068 мкФ – 3 шт., 47 пФ – 1 шт.
  9. Любой тумблер для включения питания устройства.
  10. 1 м экранированного провода (например, антенного).
  11. 3 зажима «крокодил».
  12. Небольшой кусочек фольгированного текстолита толщиной 1 мм.
  13. Многожильный двойной изолированный медный провод – 1,5 м.
  14. Клеевой пистолет.
  15. Паяльник, припой, флюс.

Конструкция устройства

Корпусом стробоскопа будет фонарик. Схема собирается навесным монтажом. Готовая схема заливается горячим пластиком из клеевого пистолета, и после отвердения заливки помещается в отсек для батареек фонарика. Питающий и сигнальный кабели выводятся наружу через просверленные в корпусе отверстия. К концам проводов питания нужно припаять зажимы, обозначив полярность. На вход стробоскопа подключить антенный кабель. К центральной жиле входного кабеля припаять зажим «крокодил». После подключения стробоскопа к мотору авто с его помощью на вход будут подаваться импульсы синхронизации высоковольтного провода зажигания. Чтобы это стало возможным, достаточно надеть его на изоляцию высоковольтного провода зажигания первого цилиндра двигателя авто. Импульс синхронизации пойдет через емкость, образуемую центральной жилой провода зажигания и зажимом. То есть простой самодельный емкостной датчик будет состоять из зажима «крокодил», надетого на высоковольтный провод.

Сделать световой излучатель удобнее всего, смонтировав группу светодиодов, вплотную друг к другу в центре диска из фольгированного текстолита. Устанавливать его следует так, чтобы светодиоды, пройдя в отверстие для лампочки в отражателе, оказались как можно ближе к точке расположения нити накаливания. Прикрепить текстолит к рефлектору можно при помощи клеевого пистолета.

Питание

Питание прибора происходит от бортовой электрической сети авто. Диод VD1 предохраняет устройство от случайного подключения питания обратной полярности. Импульс синхронизации с емкостного датчика через цепь C1, R2 подается на вход триггера DD1.1, включенного как ждущий мультивибратор. Импульс высокого уровня запускает ждущий мультивибратор, триггер при этом переключается, а конденсатор С3, заряженный в исходном состоянии, начинает перезаряжаться через резистор R3. Приблизительно через 15 мс этот конденсатор перезарядится настолько, что напряжение на входе R вновь сбросит триггер в исходное состояние.

Так ждущий мультивибратор реагирует на каждый положительный импульс с емкостного датчика, вырабатывая синхронно входному прямоугольный выходной импульс высокого уровня постоянной длительности (15 мс), которая определяется номиналами резистора R3 и конденсатора C3. Последовательность этих импульсов с неинвертирующего выхода триггера DD1.1 поступает на вход второго ждущего мультивибратора, собранного по аналогичной схеме на триггере DD1.2. Длительность импульсов второго узла достигает 1,5 мс и определяется параметрами резистора R4 и конденсатора C4. Выходное напряжение второго триггера открывает триоды VT1 – VT3, и через светодиоды проходят импульсы тока величиной от 0,7 до 0,8 А.

Некоторые тонкости

Несмотря на то что величина тока значительно больше допустимой для этих светодиодов (максимально допустимый прямой импульсный ток всего 100 мА), не следует опасаться перегрева и выхода их из строя. Потому что длительность импульсов невелика, а их скважность в нормальном режиме не меньше 15. Яркость же вспышек девяти светодиодов позволяет пользоваться прибором даже днем.

Редакция журнала «Радио» сообщает о том, что для того чтобы убедится в работоспособности устройства, было проведено его испытание.

Светодиоды с успехом перенесли импульсный ток величиной 1 А в течение часа, при этом не было обнаружено даже небольшого их перегрева. Обычно же время работы с прибором не превышает 5 мин, да и ток, проходящий через них в этой конструкции, несколько меньше.

Назначение ждущего мультивибратора на триггере DD1.1 – защита светодиодов от выхода из строя при увеличении частоты вращения коленвала. Обычно прибором работают при частоте вращения коленвала близкой к холостому ходу (от 800 до 1200 об/мин). Так как длительность вспышек величина постоянная, при увеличении частоты вращения коленвала будет уменьшаться скважность импульсов тока через светодиоды, и, как следствие этого, увеличится нагревание последних. Поэтому длительность импульсов ждущего мультивибратора на триггере DD1.1 выбрана такой, что при достижении частоты вращения коленвала 2 тыс. об -1 скважность его выходной последовательности импульсов приближалась к 1. При дальнейшем же возрастании частоты вращения, а с ней и входных импульсов, происходит прекращение синхронизации ими выходных импульсов, а узел начинает вырабатывать последовательность импульсов усредненной частоты, что гораздо менее опасно для светодиодов.

Настройка устройства

Опытным путем установлено, что длительность вспышек должна быть от 0,5 до 0,8 мс. При меньшей длительности вспышек во время установки угла опережения с помощью стробоскопа велико ощущение недостатка света. Если же длительность больше, то движущаяся метка как бы размазывается. Необходимую длительность легко подобрать своими руками не измеряя, а руководствуясь только зрительными ощущениями. Регулируется она с помощью подстроечного резистора R4. Больше схема ни в каких настройках не нуждается.

Использование прибора

Для установки угла (момента) опережения своими руками устройством освещают установочные метки, работающего на холостых оборотах двигателя авто. Одна из них находится на вращающихся деталях мотора авто (на шкиве коленвала или на маховике). Вторая метка – неподвижна, она находится или на крышке передней части блока цилиндров авто, или на корпусе коробки передач. Если в свете прибора подвижная метка кажется стоящей напротив неподвижной, зажигание авто в норме и не требует регулировки момента (угла) опережения.

В случае несовпадения меток для регулировки момента опережения нужно соответственно изменить положение трамблера. Для задержки момента зажигания нужно повернуть трамблер по ходу вращения бегунка, а чтобы сделать его раньше – в обратную сторону. Если же искрообразованием в вашем авто управляет микропроцессор, ищите неисправный датчик или доверьте решение этой проблемы профессионалам.

Ещё в детстве я собирал стробоскоп на импульсной газоразрядной лампе ИФК-120.

Когда схема заработала, радости было немерено… С тех пор прошло уже лет 10, и вот решил я, так сказать, вспомнить былое, но уже «в современном стиле». В современном стиле — это на светодиодах. Преимущества светодиодов налицо — не боятся вибрации, долговечны, безопасны, и т.д. При непрерывном свечении срок службы светодиода составляет в среднем 50 тысяч часов. Ну а в режиме кратковременного свечения срок службы многократно увеличивается, ведь у светодиодов есть ещё одно неоспоримое преимущество — абсолютно не боятся включений-выключений. Схема стробоскопа простая «как три рубля», собирается на деталях «с помойки».

Для сборки схемы стробоскопа достаточно найти нерабочий ATX блок питания от компьютера. В большинстве таких блоков питания «сердцем» является микросхема TL494, широко распространенный ШИМ-драйвер. Также стоит отметить, что данная микросхема продается практически в любом радиомагазине за бесценок, на ней и собран девайс. Резисторы и конденсаторы можно взять с того же блока питания. Полевой транзистор я использовал с нерабочей материнской платы, там их имеется около 10 штук, подходит любой N-канальный мощный полевик, например, AP15N03GH или IRLZ44NS. Подстроечными резисторами настраивается частота вспышек (VR2) и длительность вспышек (VR1). Светодиод VD1 (зеленого цвета) индицирует наличие питания, светодиод VD2 (красного цвета) показывает напряжение на выходе схемы. Резистор R6 ограничивает ток через мощный светодиод, сопротивление этого резистора подбирается опытным путём, до достижения оптимального тока через светодиод, также этот резистор должен быть мощностью 2…5 ватт. Питание схемы может быть любым в диапазоне от 10 до 20 вольт, но при изменении питающего напряжения необходимо изменить сопротивление резистора R6, ограничивающего ток через мощный светодиод. Кроме светодиодов, можно подключать к схеме светодиодные ленты. При подключении к стробоскопу светодиодных лент, рассчитанных на питание напрямую от 12 вольт, вместо резистора R6 нужно установить перемычку, так как в составе лент уже имеются ограничительные резисторы, а также нужно запитать схему строго от 12 вольт. Если не хватает диапазона регулировки частоты вспышек, то нужно изменить номинал конденсатора C1. Увеличение ёмкости уменьшает частоту (вспышки происходят реже), уменьшение ёмкости увеличивает частоту (вспышки происходят чаще). При правильной сборке схема начинает работать сразу. Для проверки схемы нужно установить подстроечные резисторы VR1 и VR2 в среднее положение, и подать питание на схему. Я запитал схему от 12 вольт.

На печатной плате практически все SMD резисторы и конденсаторы типоразмера 1206, светодиоды типоразмера 0805, полевой транзистор в корпусе DPAK, подстроечные резисторы VR1 и VR2 должны быть многооборотные. Конденсаторы C2, C4 — керамические. Конденсаторы C1, C3 — любого типа. Так как светодиод должен работать в режиме стробоскопа (давать короткие вспышки), то длительность вспышек должна быть установлена почти на минимальную (подстроечным резистором VR1). Подстроечным резистором VR2 настраивается частота вспышек «по вкусу».

Я использовал светодиод OSRAM OSTAR SMT RTDUW S2W, установленный на процессорный радиатор от старого компьютера.

Данный светодиод содержит 4 кристалла, по 700 мА (2,5 Вт) каждый. Все кристаллы разных цветов: Красный, Зелёный, Синий, Белый.

Если задействовать сразу все 4 кристалла (соединить их последовательно), то получится белый свет. Именно так я и сделал. Сопротивление резистора R6 при питании 12 вольт у меня получилось 5 Ом. Резистор R6 ограничивает ток через светодиод, так как светодиод нужно питать стабильным током. Вместо токоограничивающего резистора R6 можно использовать микросхему LM317, включенную по схеме стабилизации тока (микросхема + внешний резистор). В режиме стробоскопа LM317 может эксплуатироваться без радиатора, так как основную часть времени светодиод не светится. При использовании устройства в режиме маяка необходимо установить LM317 на радиатор.

Привожу несколько примеров подключения различных светодиодов к плате стробоскопа:

Фото платы стробоскопа:

Вид со стороны дорожек. Плата получилась не очень, но сойдёт:

Расположение компонентов на плате:

Прилагаю видео стробоскопа в действии.

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
U1ШИМ контроллер TL4941В блокнот
VT1MOSFET-транзистор AP15N03GH1IRLZ44NSВ блокнот
VD1Светодиод АЛ307В1В блокнот
VD2Светодиод АЛ307Б1В блокнот
C1Конденсатор2.2 мкФ1В блокнот
C2, C4Конденсатор100 нФ2В блокнот
C3Электролитический конденсатор100 мкФ1В блокнот
R1Резистор 9.1 кОм1В блокнот
R2Резистор 100 кОм1В блокнот
R3Резистор 1 кОм1В блокнот
R4, R5Резистор

Владельцы карбюраторных автомобилей не понаслышке знакомы с трудностями процесса регулировки зажигания. Обычно это делается на слух, что не очень удобно. Используя стробоскоп, это процесс можно облегчить. Однако промышленные устройства достаточно дорогие, поэтому многие изготавливают стробоскоп для зажигания своими руками.

Светодиодный стробоскоп на таймере NE555

Главным компонентом в данной схеме стробоскопа является интегральный таймер NE 555. Это распространенная микросхема часто используемая в электронных самоделках.

В качестве светового излучателя применена готовая сборка из шести светодиодов от китайского фонарика.

Схема стробоскопа на таймере NE555

Потенциометром Р1 задается время пауз между импульсами, которые подаются на VT1. Открываясь в момент подачи сигнала, полевой транзистор «зажигает» стробоскоп.

Следует учитывать, что в момент вспышки, ток, проходящий через излучатель, превышает два ампера. Это обстоятельство заставляет использовать ограничительный резистор с мощностью рассеивания не менее 2Вт. Поводов для беспокойства относительно выхода из строя светодиодов нет. Сверхкраткое время работы в подобных режимах не причинит урон полупроводникам.

Вместо транзистора, указанного на схеме, можно применять его ближайшие аналоги: IRFZ44, IRF3205, КП812Б1 и другие.

Требования к диоду VD1 – высокое быстродействие. 1N4148 с успехом заменяется отечественным вариантом КД522. Также хорошо подойдут любые диоды Шоттке.

Емкость конденсаторов можно увеличивать на один порядок. Это никак не отразится на работоспособности схемы.

Вот так выглядит собранный прибор, с тремя сверхмощными светодиодами.

Стробоскоп в сборе

Небольшое количество деталей позволяет выполнить стробоскоп из светодиодов навесным методом или при помощи специальных монтажных панелек. Если в процессе пайки не будет допущено ошибок, схема заработает сразу, без дополнительной наладки.

Другая вариация сбора своими руками автомобильного стробоскопа на светодиодах построена на базе драйвера ШИМ TL494. Стоимость микросхемы лежит в пределах 10 – 20 рублей за штуку, поэтому дефицитной ее не назовешь. Кроме этого, извлечь требуемый компонент можно из старого блока питания ATX от персонального компьютера.

Схема светодиодного стробоскопа на ШИМ-контроллере TL494

Как и в предыдущем случае, излучателем управляет MOSFET-транзистор. Здесь он может быть любого типа, отвечающего двум требованиям:

  • Номинальный ток – от 2А;
  • внутренняя структура – N-типа.

Примеры подходящих полевиков: AP15N03GH или IRLZ44NS.

Подстроечным резистором VR1 устанавливается скважность работы (длительность вспышек), а VR2 – их частота. Удобнее применять потенциометры с линейной зависимостью, так процесс настройки выполнять гораздо проще.

Источником света на данной схеме стробоскопа выступает один мощный светодиод. Чтобы подключить 12 вольтную светодиодную ленту, резистор R6 необходимо удалить, установив вместо него перемычку.

Остальные элементы схемы светодиодного стробоскопа могут быть любыми с указанными номиналами.

Недостатки промышленных моделей

Промышленные устройства зачастую имеют определенные недостатки, из-за которых полезность прибора весьма сомнительна.

Для начала, цена на них бывает вполне существенной. Например, современные цифровые модели обойдутся автолюбителю в 1000 р. Более функциональные модели стоят уже от 1700. Продвинутые стробоскопы стоят порядка 5500 р. Нужно ли говорить, что стробоскоп автомобильный (своими руками сделанный) обойдется автолюбителю в 100-200 рублей.

Часто в заводских устройствах производитель применяет особо дорогую газоразрядную лампу. Лампа имеет определенный ресурс, а через некоторое время ее придется заменить. А это само по себе равносильно приобретению нового заводского устройства.

Почему стоит делать стробоскоп своими руками?

Недостатки заводских и технологичных устройств подталкивают автолюбителя к самостоятельному изготовлению этого устройства. Кроме того, намного дешевле по стоимости оснастить это оборудование светодиодами вместо дорогой лампы. В качестве источника диодов или донора подойдет обыкновенная лазерная указка или фонарик.

Остальные детали также обойдутся в копейки. Особых инструментов при этом не понадобится. Бюджет процесса изготовления стробоскопа составит не более 100 рублей.

Как сделать стробоскоп своими руками?

Схем и вариантов для изготовления существует огромное количество. Однако в большинстве все проекты по созданию этого гаджета похожи. Давайте посмотрим, что понадобится для сборки.

Нам понадобится простой транзистор КТ315. Его без труда можно найти в старом советском приемнике. Обозначение может слегка отличаться, но это не беда. Тиристор КУ112А можно без проблем добыть из блока питания старинного телевизора. Там же можно найти резисторы небольших размеров. Так как мы делаем светодиодный стробоскоп своими руками, то, естественно, понадобится светодиодный фонарь. Для этого лучше приобрести самый дешевый, из Китая. Кроме этого, нужно запастись конденсатором до 16 В любым низкочастотным диодом, маленьким реле на 12 А, проводами, крокодилами, экранированным проводом 0,5 м длиной, а также небольшим куском медного провода.

Итог, или оформление светодиодов стробоскопа для авто

Для большинства любителей самодельных стробоскопов иногда важнее скрыть факт обладания самодельной светоиллюминацией, сходной с полицейской. Поэтому зачастую сам пакет лампочек или светодиодов выполняют съемным, чтобы легко установить на капот или крышу авто. Иногда для пущей маскировки сверху такого блока одевают легкосъемный пластиковый чехол, по внешнему виду сильно напоминающий фонарь такси.

Преимуществом подобного конструктивного решения является то, что приспособление стробоскопа легко снять и даже выбросить. Стробоскоп с одетым поверх пластиковым чехлом будет напоминать фонарь таксиста и не привлечет внимания полицейских на стоянке или при случайной остановке авто на дороге.

Вторым вариантом установки является монтаж пакета светодиодов стробоскопа в область радиаторной решетки авто или в полость лампы-фары. Это более дорогой и эффектный способ, так как потребует некоторой переделки оптики авто, и в случае конфликта с правоохранителями может стать основанием для помещения машины на штрафстоянку.

Владельцы карбюраторных автомобилей не понаслышке знакомы с трудностями процесса регулировки зажигания. Обычно это делается на слух, что не очень удобно. Используя стробоскоп, это процесс можно облегчить. Однако промышленные устройства достаточно дорогие, поэтому многие изготавливают стробоскоп для зажигания своими руками.

Схема устройства и принцип работы

После подачи тока через провода питания конденсатор очень быстро зарядится через резистор. Когда будет достигнут определенный порог заряда, через резистор напряжение будет поступать на открывающийся контакт транзистора. Здесь сработает реле. Когда реле замкнется, оно создаст цепь из тиристора, светодиода и конденсатора. Затем через делитель импульс попадет на управляющий вывод тиристора. Далее тиристор откроется, а конденсатор разрядится на светодиоды. В результате стробоскоп, своими руками изготовленный, ярко вспыхнет.

Через резистор и тиристор базовыевывод транзистора соединяется с общим проводом. Из-за этого транзистор закроется, а реле отключится. Время свечения светодиодов увеличивается, так как контакт разрывается не сразу. Но контакт разорвется, а тиристор будет обесточен. Схема вернется в базовое положение, пока не поступит новый импульс.

Изменяя емкости конденсатора, можно менять время свечения. Если выбрать конденсатор большей емкости, то светодиодный стробоскоп, своими руками изготовленный, будет ярче и дольше светиться.

Прибор на микросхеме

Основной деталью этой несложной схемы является микросхема типа DD1. Это так называемый одновибратор 155АГ1. В этой схеме он запускается лишь от отрицательных импульсов. Управляющий сигнал поступит на транзистор КТ315, а он сформирует эти отрицательные импульсы. Резисторы 150 К ОМ, 1 К ОМ, 10 К ОМ, а также стабилитрон КС139 работают в качестве ограничителей амплитуды входящего сигнала с зажигания авто.

Конденсатор 0,1 мФ вместе с сопротивлением в 20 КОм зададут нужную длительность импульсов, которые будут сформированы микросхемой. При такой емкости конденсатора длительность импульсов будет примерно до 2 мс.

Затем с 6-й ножки микросхемы импульсы, которые к этому моменту будут синхронизированы с зажиганием машины, попадут на базовый вывод транзистора КТ 829. Он здесь в качестве ключа. Результат — это импульсный ток через светодиоды.

Как запитывается этот стробоскоп для авто? Своими руками нам необходимо провести пару проводов к клеммам автомобильного аккумулятора. Нужно обязательно следить за уровнем заряда АКБ.

Если вы верно соберете эту простую схему, то сразу же сможете увидеть, как работает устройство. Если вдруг яркости недостаточно, то это регулируется подбором соответствующего сопротивления.

В качестве корпуса для устройства можно использовать старый или китайский фонарик.

Инструкция по изготовлению прибора для установки зажигания

Простой способ

В сети есть много разных схем, практически все из них легко собираются и не требуют больших затрат на материалы. Рассмотрим одну из наиболее популярных схем создания стробоскопа в домашних условиях. Из деталей нам понадобится:

  • транзистор КТ315;
  • тиристор КУ112А, резисторы на 0,125 Вт;
  • любой фонарик на диодах (диодов должно 6 или больше);
  • конденсаторы C1;
  • низкочастотный диод V2;
  • реле с индексом RWH-SH-112D;
  • шнур питания длиною 1 метр;
  • специальные зажимы;
  • медный провод около 10 см.

Все детали можно приобрести на радиорынке или в специализированном магазине. В качестве корпуса для прибора можно использовать старый фонарик или вспышку от фотоаппарата.

Схема сборки автомобильного стробоскопа в корпусе от старого фонарика

Использовать такое устройство можно не только для установки зажигания. Им можно проверить свечу, настроить работу регулятора.

Самодельная приблуда с использованием таймера

Стробоскоп на основе таймерных устройств имеет более сложную схему. Его главное преимущество в стабильных световых импульсах, которые не зависят от напряжения батареи. Прибор также может работать в режиме тахометра, для этого необходимо просто изменить положение регулятора.

Таймерные стробоскопы также можно использовать в качестве тахометра

Совет: В схеме лучше использовать диоды из серии КД521. Если вы не нашли таймера отечественного производства, можно взять зарубежный аналог NE555.

Схема изготовления прибора на светодиодах

В основе такого устройства лежит микросхема 155АГ1, она запускается импульсами с отрицательной полярностью. В схеме используются сопротивления R1, R2, R3, которые ограничивают амплитуду входного сигнала. Требуемая длительность импульсов устанавливается ёмкостью С4 и резистором R6. При стандартных настройках это 2 мс. В качестве источника питания будет использоваться аккумуляторная батарея автомобиля.

Светодиодные стробоскопы имеют высокую надежность и могут использоваться даже при ярком дневном освещении

Видео: как сделать стробоскоп своими руками

Еще одна схема стробоскопа

Данный стробоскоп на светодиодах, своими руками изготовленный по такому принципу, также можно запитать от автомобильного аккумулятора. Диоды позволят создать защиту от неправильной полярности. В качестве крепежа здесь применяется обычный крокодил. Его нужно прицепить на высоковольтный контакт первой свечи на моторе. Далее импульс пройдет через резисторы и конденсатор и придет на вход триггера. К тому моменту этот вход уже будет включен одновибратором.

До импульса одновибратор находится в обычном режиме. Прямой выход триггера имеет низкий уровень. Инверсный вход, соответственно — высокий. Конденсатор, присоединенный плюсом к инверсному выходу, зарядится через резистор.

Высокоуровневый импульс запускает одновибратор, что переключает триггер и служит для заряда конденсатора через резистор. Через 15 мс конденсатор полностью зарядится, а триггер переключится в обычный режим.

В итоге одновибратор отреагирует на это синхронной последовательностью прямоугольных импульсов длительностью примерно 15 мс. Длительность можно регулировать при помощи замены резистора и конденсатора.

Импульсы второй микросхемы составляют до 1,5 мс. На этот период открываются транзисторы, которые представляют собой электронный коммутатор. Затем через светодиоды протекает ток. По этому принципу работает стробоскоп для авто (своими руками изготовленный он был или нет, не имеет значения — оба устройства светят одинаково).

Ток, проходящий через светодиоды, гораздо больший, чем паспортный. Но, так как вспышки недолгие, то светодиоды не выйдут из строя. Яркости будет достаточно, чтобы использовать этот полезный прибор даже в дневное время.

Этот стробоскоп своими руками можно собрать в корпусе от все того же многострадального карманного фонарика.

Построение схемы на основе микропроцессора

Наиболее «продвинутые» в основах микроэлектроники автолюбители считают, что самой эффективной будет схема стробоскопа на основе контроллера. На микроконтроллере PIC12F675 схема будет иметь возможность обеспечить импульсы тока до одного ампера с регулируемой длительностью.

Схема стробоскопа для авто проста в сборке своими руками. В качестве нагрузки чаще всего применяют пакет из светоэлементов, с возможностью изменять частоту мерцаний стробоскопа на светодиодах. Сам процессор управляет двумя мощными транзисторами КТ817 и может выдать семь различных комбинаций сигналов. Сама система достаточно распространена в промышленных схемах служебных мигалок, особенно для простых систем стробоскопов на решетке радиатора авто.

Самым неприятным в подключении подобных схем является высокая чувствительность любых микропроцессоров к превышению напряжения или возникновению режима короткого замыкания. Поэтому при сборке и пайке обязательным условием является использование хорошего заземления. Кроме того, в работе обязательно использование стабилизированного питания, обычно для этих целей используется схема на спаренном низковольтном стабилитроне.

При подключении схемы стробоскопа в цепь электропроводки авто необходимо предварительно полностью отключить питание от аккумуляторной батареи, запуск и испытание схемы категорически запрещается проводить при отсутствии нагрузки.

Как работать с прибором?

Собрав по одной из приведенных схем устройство, можно просто и легко, а главное, точно настраивать зажигание на карбюраторных двигателях, проверять правильность работы свечей и катушек, контролировать работу регуляторов угла опережения.

Чтобы максимально правильно выставить зажигание, обычно исходят из того, что смесь зажигается за пару градусов до того, когда поршень придет в самую верхнюю точку. Этот угол называется «угол опережения». Когда обороты коленчатого вала растут, угол тоже должен увеличиваться. Так, этот угол выставляют на холостых оборотах, а затем необходимо проконтролировать правильность настройки на всех режимах работы агрегата.

Как правильно настроить самоделку

Чтобы проверить устройство на практике и установить угол опережения зажигания, делаем следующее:

  1. Прогреваем двигатель и оставляем его работать на холостом ходу.
  2. Подключаем самодельный стробоскоп к источнику питания.
  3. Наматываем медный датчик на жилу первого цилиндра.
  4. Направляем источник света на специальную метку, которая нанесена на корпус.
  5. Находим неподвижную точку на шкиве маховика.
  6. Чтобы две точки сошлись, необходимо вращать корпус зажигания и после зафиксировать его в определённом положении.

На практике самодельные стробоскопы ничем не уступают заводским. Главное, правильно собрать схему и проверить работу устройства. Изготовленные стробоскопы в домашних условиях обойдутся совсем недорого и могут быть легко отремонтированы при необходимости.

Интерес современного автомобилиста не ограничивается вниманием к авто как средству перемещения. Во многом важен тот эффект и впечатление, которые можно произвести на всех участников движения. После повсеместного запрета на имитаторы мигалок правоохранителей и служебных авто, как-то неожиданно мода на стробоскоп на решетке и двойной сигнал стала набирать силу.

Большинство приведенных схем не предназначены для полной имитации сигналов служебных авто, это, скорее, чисто спортивный интерес. А кому и за что платить штрафы, решает каждый сам, исходя из своих возможностей.

Существует несколько простых способов организовать стробоскоп на авто, все зависит от количества сил и средств, которые позволительно потратить для постройки автомобильного стробоскопа. Чаще всего стараются получить максимально реалистичное мерцание ламп стробоскопа.

Проверено на практике несколько простых схем светодиодных стробоскопов для авто:

  • по самой простой схеме с использованием двух реле 494.3787;
  • на основе таймера 555 и схемы к561ие8;
  • на микроконтроллере PIC12F675;
  • на элементной базе транзисторах 315 серии.

К сведению! Самый безопасный и популярный способ — использовать мигающий эффект путем установки светодиодов в фары авто. Это красиво и стильно.

Выставляем зажигание

Запускаем и прогреваем двигатель. Теперь запитываем наш стробоскоп на светодиодах и подключаем датчик. Сейчас нужно направить прибор на метку на корпусе ГРМ и отыскать метку на маховике. Если момент нарушен, то метки будут достаточно далеко друг от друга. Методом вращения корпуса ГРМ добейтесь совпадения меток. Когда вы нашли это положение, зафиксируйте трамблер.

Затем пора поднять обороты. Метки разойдутся, однако это вполне нормальная ситуация. Вот так проводится настройка зажигания с использованием стробоскопа.

Итак, мы выяснили, как изготавливается стробоскоп на светодиодах своими руками.

Не каждый замечал, как работает полицейская мигалка. Если внимательно присмотреться, то можно заметить, что в светодиодном блоке синего или красного цвета каждый светодиод загорается несколько раз, затем происходит переключение. Такое устройство несложно собрать своими руками и применять для собственных нужд. Рассмотрим подробнее.

О стробоскопах

Стробоскопический эффект объясняется способностью глаза, при определённых условиях, воспринимать движущиеся предметы, как неподвижные или неподвижные, как движущиеся.

Для обычного автомобиля стробоскоп — это подсветка, которая размещается под решёткой радиатора или в задней части.

Световой поток формируется светодиодами или специальными лампами. К примеру, светодиодные стробоскопы собираются в жёстком корпусе или в прозрачном виниловом кожухе, поэтому легко крепятся на авто.

Без всякого сомнения, такие устройства есть в продаже, но дешевле и интереснее собрать своими руками.

Описание простой схемы

Из большого количества схем стробоскопов, напечатанных в технической литературе, наиболее простая такая схема:

Структурная схема устройства выглядит так:

1. Задающий генератор. Для формирования прямоугольных импульсов используется известный таймер NE555, его аналог КР1006ВИ1.

Микросхема может работать как мультивибратор или генератор прямоугольных импульсов.

В данном случае используется режим генератора.

На выходе формируется сигнал в виде логической единицы или нуля, то есть в виде напряжения высокого уровня (+5V) или низкого (+0,4V).

2. Счётчик импульсов.

Для управления импульсами с выхода генератора используется десятичный счётчик импульсов CD4017, его отечественный аналог 561ИЕ8.

У CD4017 имеется 10 выходов: Q0 — Q9.

После включения питающего напряжения на выходе Q0 сразу появляется логическая единица. Запуск счётчика производится логической единицей, поступившей на 14-ю ножку. С частотой, заданной таймером NE555, логическая единица перемещается последовательно по всем выходам и возвращается на выход Q0.

Для микросхемы оптимальным считается питающее напряжение от 9 до 12 V. Выходное напряжение счётчика всегда на 5% ниже питающего, поэтому при питающем напряжении +12 V — выходное напряжение составляет 11,4 V.

3. Транзисторные ключи.

Чтобы не перегружать выходы счётчика по току, используются биполярные NPN транзисторы S8050, их аналог КТ819.

Диоды на входе транзисторов препятствуют связям выходов счётчика по току. Подбор транзисторов производится в зависимости от нагрузки.

Если используются галогенные лампы, то ключи собираются на полевых транзисторах.

4. Светодиодная сборка.

На рассматриваемой схеме, источник света выполнен на полупроводниковых светоизлучающих диодах типа LED. Для правильного распределения токов и напряжения используются резисторы.

Схема работает так:

При поступлении питающего напряжения, запускается генератор микросхемы IC1, а на выходе счётчика Q0 появляется логическая единица.

Счётчик начинает перемещать логическую единицу по всем выходам со скоростью, выбранной цепочкой С1 и RP1, которая устанавливает частоту генерации прямоугольных импульсов, и, следовательно, частота мигания стробоскопа.

Так как 6 выходов счётчика объединены в два канала (красный, синий) и сгруппированы по три, то ключи Q1 и Q2 будут открываться попеременно по три раза. Схемой обеспечивается вспыхивание одной группы светодиодов три раза, а затем переключение на другую группу.

Собранная на печатной плате, схема стробоскопа для автомобиля выглядит так:

В итоге рассмотрения этой схемы, важно отметить простоту сборки. Собранному устройству не нужна настройка, кроме того, оно длительное время работает устойчиво.

Виды стробоскопов. Сферы применения, преимущества и недостатки

Стробоскоп своими руками для дискотеки на светодиодах

Стробоскопический эффект известен довольно давно. Действие стробоскопического прибора (стробоскопа) основано на особенностях восприятия зрением человека движения предмета при вспышках источника света. При этом в случае совпадения частоты вспышек света с частотой движения вращающегося предмета для человека-наблюдателя предмет кажется неподвижным. Существует несколько видов стробоскопов.

Например, еще в прошлом веке для регулировки скорости вращения диска проигрывателя грампластинок использовался стробоскоп с газоразрядной лампой.

Типы стробоскопов

По своей конструкции стробоскопы разделяются на:

  • оптико-механические,
  • электронно-оптические;
  • осциллографические;
  • электронные.

В оптико-механических стробоскопах (тахометрах) в качестве прерывателя света используются диски со щелями.

В оптико-электронных стробоскопах используются затворы света, работа которых основана на различных оптико-электронных эффектах.

Осциллографические стробоскопы предназначены для различных исследований электронных цепей.

Наиболее распространенными являются электронные стробоскопы. Такой стробоскоп состоит из электронной схемы, представляющей из себя собой импульсный генератор с регулируемой частотой импульсов, и источника света.

В качестве источника света могут использоваться газоразрядные лампы или светодиоды.

Области применения стробоскопов

Современные стробоскопы могут применяться в различных областях. Наряду со стробоскопами, используемыми в промышленности, существуют следующие виды стробоскопов:

  • автомобильные стробоскопы;
  • стробоскопы для ночных клубов, дискотек;
  • стробоскопы для наружной рекламы;
  • фонарь-стробоскоп.

Автомобильные стробоскопы

Для нормальной работы автомобиля очень важным является правильная установка начального момента зажигания, а также правильная работа центробежного и вакуумного регуляторов опережения зажигания. Неправильные установки этих операций приводят к лишнему расходу топлива и преждевременному выходу из строя двигателя. Для правильной регулировки этих процессов часто используются стробоскопы на машину.

Автомобильный стробоскоп

В качестве примеров существующих схем автомобильных электронных стробоскопов можно рассмотреть схему с использованием газоразрядной лампы и схему с использованием светодиодов.

В состав схемы стробоскопа на газоразрядной лампе входят импульсная безинерционная газоразрядная лампа, цепи поджига которой подключены к свече первого цилиндра двигателя, преобразователя напряжения, выпрямителя, а также формирующих напряжения конденсаторов и резисторов. В момент образования в цилиндре двигателя искры лампа выдает импульс света. По нанесенным на движущиеся части двигателя меткам можно контролировать и настраивать правильность установки момента зажигания и работу регуляторов опережения зажигания.

Схема светодиодного стробоскопа для авто отличается от схемы на газоразрядной лампе. Особенностью ее является то, что в этом случае нет необходимости использовать преобразователь бортового напряжения автомобиля. О характеристиках светодиодных ламп читайте тут.

Для питания светодиодов достаточно напряжения аккумулятора в 12 В.

В этом случае в качестве задающего генератора импульсного источника питания светодиодов используется одновибратор, который синхронизируется сигналом, поступающим с цилиндра двигателя при образовании искры. Импульс с задающего каскада подается на электронный коммутатор, состоящий из мощных транзисторов, что необходимо для питания группы светодиодов.

Стробоскопы для дискотек

Стробоскопы для дискотек позволяют создать в помещении прерывистое освещение, которое как бы останавливает движущиеся предметы. Эти устройства позволяют реализовать в зале или на сцене различные спецэффекты. При этом из пяти основных цветов создаются различные оттенки, которые рассеиваются с помощью матового стекла. О правилах освещения дискотеки читайте в этой статье.

Светодиодный стробоскоп для дискотеки

Помимо этого стробоскопы используются для сценического освещения, но их использование ограничено определенными правилами расположения и направления светового потока. Прочитать об этом можно здесь.

В продаже имеется очень большое количество стробоскопов для сцены, рекламы и дискотек. Выпускаются как светодиодные, так и ламповые стробоскопы.

Примером такого лазерного стробоскопа может служить светодиодный стробоскоп IMLIGHTFlash. Этот стробоскоп включает световую панель из 16 светодиодов, систему управления, позволяющую создавать стробоскопический эффект с частотой от 0 до 20 вспышек в секунду, эффект «бегущих огней», музыкальный режим с вспышками в такт музыки. Кроме того, этот прибор позволяет регулировать яркость свечения и имеет несколько различных программ автоматического изменения освещения. Благодаря использованию светодиодов и импульсного источника питания стробоскоп является очень экономичным устройством.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: