Как сделать теплогенератор своими руками

Особенности теплового насоса «Френетта»: принцип действия

В устройство данного теплового насоса входит ротор, статор, вал и лопастный вентилятор. Работа основывается на действии двух цилиндров – а именно, статора и ротора. Большой цилиндр – это статор, он пустой внутри. Ротор отличен меньшим объемом, он вставляется в статор. Масло заливают в большой цилиндр, оно нагревается под верчением малого цилиндра.

Существует множество моделей тепловых насосов Френетта, которые имеют достаточно высокую стоимость

На подключенном валу есть лопастный вентилятор, благодаря этому ротор движется. Вентилятор помогает нагретому воздуху попадать в помещение, то есть выполняется функция обогрева. Но это простейшая модель, через какое-то время ученый ее усовершенствовал. В такой модели уже нет внутреннего цилиндра, он заменен стальными дисками.

В усовершенствованной модели нет и вентилятора. Такие устройства заработали отличные отзывы. Затраты на электричество меньше, и намного меньше, чем производимая устройством энергия, что используется для обогрева помещения.

Чем так хорош тепловой насос «Френетта»:

  • Нет теплообменника;
  • Энергия нагревания имеет большую мощность;
  • Циркуляция носителя тепла осуществляется в закрытой системе;
  • Большая часть насоса в форме контура, что помогает формированию вакуумных зон и температурному повышению.

Насос насосу рознь. Прежде всего, они могут быть промышленные и частные. Последние используются для обогрева дома или не очень больших помещений.

Кстати, тепловой насос можно изготовить своими руками, используя старое оборудование. Все рекомендации на следующей странице:

Термоэлектрические генераторы

В качестве устройства для прямого превращения теплоты в электрическую энергию применяют термоэлектрические генераторы, которые используют принцип работы обычных термопар (рис. 1).

Принцип работы термопар

Рис. 1. Принцип работы обычных термопар

Термоэлектрический генератор (ТЭГ) — это устройство для прямого преобразования тепловой энергии в электрическую с использованием полупроводниковых термоэлементов (рис. 2), соединённых между собой последовательно или параллельно.

Полупроводниковые термоэлементы

Рис. 2. Полупроводниковые термоэлементы

В термоэлектрическом генераторе для получения электричества используется эффект Зеебека, который заключается в появлении электродвижущей силы в замкнутой цепи из двух разнородных материалов, если места контактов поддерживаются при разных температурах. Возникновение эффекта связано с тем, что энергии свободных электронов или дырок в полупроводниковом материале зависят от температуры (рис. 3).

Рис. 3. Движение электронов и дырок в материале при нагреве

Появление термоЭДС в замкнутой цепи

Рис. 4. Появление термоЭДС в замкнутой цепи из двух разнородных материалов, если места контактов имеют разные температуры

В местах контактов различных материалов заряды переходят от проводника, где они имели более высокую энергию, в проводник с меньшей энергией зарядов. Если один контакт нагрет больше, чем другой, то разность энергий зарядов между двумя веществами больше на горячем контакте, чем на холодном, в результате чего в замкнутой цепи возникает ток (рис. 4). В состав термоэлектрических генераторов входят термобатареи, набранные из полупроводниковых термоэлементов, соединенных последовательно или параллельно и теплообменники горячих и холодных спаев термобатарей. Принципиальная схема электрической цепи полупроводникового термоэлектрического генератора включает в себя полупроводниковый термоэлемент, состоящий из ветвей (вырезанных из кристаллов небольших прямоугольных элементов) p- и n-типа проводимости, то есть обладающими разными знаками коэффициента термоэлектродвижущей силы, коммутационные пластины горячего и холодного спаев и активную нагрузку (рис. 5).

Рис. 5. Устройство полупроводниковых термоэлементов

В момент замыкания термоэлемента на внешнюю нагрузку в цепи течет постоянный ток, обусловленный эффектом Зеебека (рис. 6).

Этот же ток вызовет выделение и поглощение теплоты Пельтье на спаях p- и n- ветвей термоэлемента с металлическими пластинами. Это движение носителей происходит от горячих спаев к холодным, что соответствует поглощению на горячих спаях теплоты Пельтье.

Эффект Зеебека

Рис. 6. Эффект Зеебека

Эффект Зеебека — возникновение ЭДС (термоЭДС)в электрической цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми находятся при разных температурах. Открыт в 1821 году немецким физиком Томасом Иоганном Зеебеком (Seebeck).

Эффект Зеебека состоит в том, что в электрической цепи, составленной из разных проводников (М1 и М2), возникает термоЭДС, если места контактов (А, В) поддерживаются при разных температурах. Если цепь замкнута, то в ней течет электрический ток (термоток Iт), причем изменение знака у разности температур спаев сопровождается изменением направления термотока.

Цепь, составленная из двух различных проводников (M1, М2), называется термоэлементом (пли термопарой), а ее ветви — термоэлектродами.

Полупроводниковые материалы, использующиеся в таких генераторах, должны иметь как можно больший коэффициент термоЭДС, хорошую электропроводность и, для того, чтобы получить значительный перепад температуры между холодными и горячими спаями кристаллов, малую теплопроводность. Этим требованиям лучше всего удовлетворяют сильно легированные полупроводниковые материалы. КПД термоэлемента определяется температурами горячего и холодного спаев и свойствами материалов, из которых выполнен термоэлемент — их термоэлектродвижущей силой на 1 градус, теплопроводностью и удельным электрическим сопротивлением. На величину КПД термоэлемента оказывает также влияние отношение величины его внутреннего омического сопротивления к сопротивлению присоединенной внешней нагрузки.

Чаще всего для изготовления термоэлементов применяют твердые растворы на основе халькогенидов элементов V группы. Так как для работы в термоэлектрическом генераторе не нужна высокая чистота применяемых материалов, то генераторы бывают относительно дешевы и успешно работают в условиях проникающей радиации. Для разогрева таких генераторов могут быть использованы: — побочная теплота — солнечный свет, стенка разогревающейся при работе установки (рис. 7); теплота от специального генератора — газовой или керосиновой горелки, атомного реактора (рис. 8).

Использование теплоты солнечного излучения

Рис. 7. Использование теплоты солнечного излучения

Использование теплоты от специального генератора

Рис. 8. Использование теплоты от специального генератора

Термоэлектрические генераторы применяются для энергоснабжения удаленных и труднодоступных потребителей электроэнергии -автоматических маяков, навигационных буев, метеорологических станций, активных ретрансляторов, космических аппаратов, станций антикоррозионной защиты газо- и нефтепроводов (рис. 9-10).

энергопечь позволяющая получать электроэнергию

Рис. 9. Реклама энергопечи, позволяющей получать электроэнергию

Термоэлектрическое нагревательное устройство для космонавтов

Рис. 10. Термоэлектрическое нагревательное устройство для космонавтов

Термоэлектрические генераторы обладают рядом преимуществ перед традиционными электромашинными преобразователями энергии, например турбогенераторами, отсутствием движущихся частей, бесшумностью работы, компактностью, легкостью регулировки, малой инерционностью. Недостатком термоэлектрических генераторов является низкий КПД – от 1% до 10% (рис. 8.86).

Проблема ограничения КПД

Особенностью существующих термопар является большое внутреннее сопротивление термопары как источника ЭДС, вызванные большой длиной и малым поперечным сечением ветвей термопары:

r = p1l1/s1 + p2I2/s2

где p1 и р2; 11 и l2; s1 и s2 — удельное сопротивление, длина и площадь поперечного сечения ветвей термопары. Это же является причиной и большого термического сопротивления для теплового потока через ветви термопары, часть энергии которого и преобразуется в электричество. Такая особенность приводит к тому, что КПД современных термоэлементов не превышает 1 % для металлических и 5-7% для полупроводниковых термопар при значительных перепадах температур, и не позволяет получить большие мощности термоэлектрических преобразователей. Для улучшения системы надо оптимизировать соотношения р, l и s.

Несмотря на это термоэлектрические генераторы нашли широкое применение для питания переносных устройств электроники, что объясняется простотой их эксплуатации, высокой надежностью и относительно небольшой стоимостью.

Тепловой насос «Френетта»: разоблачение или подсказки относительно использования

Есть некоторые рекомендации касательно использования насосов. Не все их соблюдают, и возникают жалобы, что промышленный или самодельный насос работает плохо, и вообще, этот прибор перехвален. Следующие подсказки будут полезны.

Тепловой насос Френетта отзывы имеет положительные, так как затраты на электричество намного меньше, чем энергия, производимая устройством, которая используется для обогрева помещений

Советы по эксплуатации насоса:

  • Используйте масло в качестве теплоносителя – это может быть рапсовое масло, хлопковое или минеральное;
  • Воду для конструирования насоса не используйте, потому как тогда в системе отопления будет избыточно давление вследствие выделения пара от нагрева воды;
  • Если делаете сами насос, то в качестве электродвигателя используется двигатель от каких-то старых электроприборов, того же вентилятора;
  • На корпус такого теплового насоса желательно установить термодатчик, он отвечает за регуляцию автоматического включения и выключения прибора;
  • Когда устанавливаете диски на ось внутри насоса, проследите, чтобы дисками было заполнено все пространство.

Отдельного упоминания заслуживает версия насоса «Френетта», создали которую Александр Васильевич Сярг, Наталья Ивановна Назырова и Михаил Павлович Леонов. Эти хабаровские учены создали такой теплогенератор, который можно назвать универсальным. Рабочая часть устройства похожа на гриб, как рабочая жидкость используется вода, достигающая кипения и превращающаяся в пар. Но не стоит пробовать сделать такой генератор дома, он используется только в промышленности.

Ещё больше информации о преимуществах теплового насоса вы найдете в нашей статье:

Варианты систем отопления на даче зимой

Если дачные условия позволяют установить мощный электрический обогреватель, следует знать основной принцип работы каждого, а также преимущества и недостатки.

Электрический котел

Принцип работы электрического котла заключается в процессе ионизации воды в расширительном баке от воздействия на неё электрического тока. Таким образом, теплоноситель напрямую пополняется энергией, через радиатор, трубы распространяет тепло.

Фото 2

Электрокотёл сразу прекращает свою работу в случае отсутствия подачи воды, исключая взрывы и загорания.

Монтаж компактного устройства несложный, имеет незначительный вес. Данная альтернатива котлам не нуждается в отдельных помещениях, специальной регистрации и регулярной чистке.

Обслуживание упрощается возможностью автоматизировать систему. Несмотря на высокий коэффициент полезного действия, агрегат совершенно бесшумный, недорого стоит.

Среди недостатков счёт за электричество может занять первое место. В этом случае следует подбирать котёл по мощности соответственно габаритам комнаты.

Малоэффективная работа электрических котлов часто связана с водоподготовкой, которую самостоятельно определить и привести в норму нельзя. Также проблемы могут возникнуть с циркуляцией жидкости, где слабые показатели провоцируют закипание, а слишком высокие не запускают процесс.

Важно! В качестве теплоносителя лучше использовать воду.

Базовая комплектация электрического устройства включает нагревательный элемент, расширительный бак, приспособления для управления работой теплогенератора.

Чтобы установить оборудование, достаточно вывести трубопроводы, подключить прибор к электросети.

ТЭНовый электрокотел

Фото 3

В качестве нагревательного элемента в ТЭНовых котлах используют один или несколько трубчатых электрических нагревателя, которые монтируются в теплообменнике.

Внутри каждого ТЭНа из алюминия кварцевым песком изолируют спираль накаливания от трубки. Это позволяет избежать короткого замыкания.

Преимущества котла заключаются в простой установке, возможности размещать конструкцию на стене или полу, регулировать мощность.

Проблемы могут возникнуть из-за большого размера электрического оборудования, любых перерывов электроснабжения, что полностью отключают систему обогрева.

Электронный обогреватель

Разница между электрическим и электронным обогревателем незначительна. ТЭН в первом случае не защищён, он передает свою энергию жидкостному теплоносителю. А в случае с электронным устройством нагревательный элемент закрыт и передает свою энергию другим деталям, что в свою очередь через специальные жалюзи отдают тепло пространству вокруг.

Плюсы электродных котлов:

Фото 4

  • несложная конструкция;
  • доступная цена;
  • вместительность;
  • отсутствие жидкостей;
  • за счёт увеличенного КПД (до 97%) тепловые утраты незначительные;
  • экономичность;
  • низкая чувствительность к изменениям напряжения.

Недостатки электродных электрокотлов состоят в высокой стоимости незамерзающих теплоносителей, скором износе электродов, уменьшение электропроводности.

Внимание! К перечисленным минусам важно отнести выделения газов, которые могут быть токсичными в зависимости от состава теплоносителя.

Усложняется эксплуатация устройства необходимость заземления, так как существует возможность поражения электрическим током, а также нужна тщательная подготовка теплоносителя.

Индукционные котлы

Фото 5

Нагрев изделий из проводников магнитным полем источников переменного магнитного поля называют индукционным нагревом. Основанный на этом принципе работы обогреватель, обеспечивает горячее водоснабжение, теплоту дома.

Положительные стороны такого обогрева заключаются в экономичности варианта, срок службы которого может достигать трех десятков лет. Обслуживание проводится редко.

К недостаткам обогревателя данного типа относится ценовая категория, вес.

Обогреватели инфракрасного типа

Инфракрасные обогреватели являются универсальными в плане их размещения. Используя специальные монтажные кронштейны устройство крепится к потолку или стене недалеко от сети. Главное при этом — высота. Аппарат должен висеть на 1-2 метра выше головы стоячего человека.

Принцип действия этих устройств заключается в том, что выделяемое тепло направленное не на воздушное пространство, а на твердые предметы рядом. Таким образом мебель и другие поверхности вокруг отдают полученное тепло в воздух, не пересушивая его.

Достоинства инфракрасных обогревателей:

Фото 6

  • безопасность;
  • бесшумность;
  • отсутствие осушительного эффекта на воздух;
  • эффективность;
  • малозатратность;
  • возможность размещения внутри дома и на улице.

Недостаток устройств — высокая цена.

Электрокамины

Электрокамины имеют элементарный принцип работы, где электрическая энергия преобразовывается в тепловую от специального накалённого ТЭНа. Особенностью конструкции является её максимальная внешняя схожесть с настоящим камином.

Плюсы альтернативного современного камина:

  1. напольный или настенный монтаж;
  2. низкое энергопотребление;
  3. пожаробезопасность, нормальная температура поверхности в действующем режиме, что позволяет прикасаться к камину и не быть обожженным;
  4. декоративные дизайнерские эффекты, имитация углей и тления;
  5. в сравнении с оригинальными устройствами низкая цена.

Минусы устройства заключаются в габаритах и весовой категории камина, что не позволяют свободно перемещать агрегат. Относительно других электрических обогревателей стоимость данного значительно выше.

Конвекторы

В конвекторе потоки воздуха проходят через трубчатые нагреватели в корпусе. В них может использоваться керамический нагревательный элемент не сжигающий кислород. Сверху корпуса обогревателя находятся проемы, пропускающие теплый поток.

Конвектор легко ставить и вписать в интерьер. Он занимает мало места, но когда он газовый, то соединяется с внешней средой трубой. Этот тип обогревателя сложнее устанавливать, хотя он экономичней.

Характерные плюсы этого электрического устройства:

Фото 8

  • регулирование уровня температуры;
  • автоматическое отключение;
  • безопасное прикосновение;
  • минимальное потребление электричества;
  • влагозащищенный корпус;
  • удобное хранение.

Минусы прибора — шумность.

Масляные устройства

Масляный обогреватель работает на разогретом температуры кипения минеральном масле в плоских секциях. С умножением секций пропорционально увеличивается мощность. Радиатор имеет термостат, есть модели со встроенным вентилятором для.

Купить мобильный обогреватель данного типа можно за доступную цену. Удобство эксплуатации, перемещения при помощи колёсиков, бесшумность, надежность агрегата позволяет удобно обогревать большие помещения.

Отрицательная сторона прибора выражается в медленном процессе обогрева и отсутствии возможности установки в местах с повышенной влажностью. Без термостата масляные устройства способны достигать температуры в 110 градусов, что вызывает ожоги при прикосновении и сушит воздух.

Фото 9

Фото 1. Электрический маслонаполненный радиатор Polaris, рассчитанный на 1200 Вт, .

Вес и габариты маслонаполнительного обогревателя не позволяют свободно его поднимать и ставить где угодно.

Тепловентиляторы

Нагревательный элемент тепловентилятора находится в пластиковом или металлическом корпусе. За ним располагается вентилятор, что направляет воздух непосредственно на него так, чтобы прогретый воздух распространялся по комнате.

Тепловентиляторы способствуют моментальному прогреву мест малых площадей.

Простая регулировка температуры с помощью пульта дистанционного управления позволяет выключить режим нагрева и использовать данный аппарат как обыкновенный вентилятор.

Фото 10

Фото 2. Тепловентилятор Scarlett, модель FH53002, прибор рассчитан на 2000 Вт, напряжение в 220 В.

Компактность отдельных термовентиляторов разрешает располагать обогреватель даже на столе.

Недостатком тепловентиляторов является их шумность и потребность в длительном обогреве больших помещений.

Изготовление теплогенератора своими руками

Как уже говорилось выше, гидродинамический тепловой насос можно сделать и самому. Для этого понадобятся: металлический цилиндр, маленький электромотор, стальные диски, стальной стержень, гайки, трубы и радиатор. Диаметр дисков по правилам должен быть меньше диаметра цилиндра.

Имя Евгения Френетта хорошо известно не только в научном мире, но также среди домашних мастеров и самодеятельных изобретателей

Как это сделать:

  • Диски последовательно нанизываются на стальной стержень, их разделяют гайки;
  • Цилиндр заполняется дисками доверху;
  • На стальной стержень наносится наружная резьба, по всей длине;
  • Для теплоносителя в корпусе делаются два отверстия, через верхнее в радиатор поступает разогретое масло, а снизу масло возвращается в систему для последующего нагрева.

Не используйте воду как теплоноситель, жидкое масло уместнее. Все же температура кипения масла выше в несколько раз. Вода при быстром нагреве превращается в пар, и в системе может случиться избыток давления. А это угроза для целостности конструкции.

Воздушное отопление набирает популярность за счет эффективности о простоты системы. Об этом в материале нашего сайта:

Утепление генератора

Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.

Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.

  1. Соедините его при помощи замка, который используют жестянщики для водосточных труб.
  2. Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
  3. Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
  4. Поместите устройство в кожух, закройте крышками.

Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).

Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.

Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.

Инструменты: сварочный аппарат, угловая шлифовальная машинка.

Материалы: листовой металл или полосовое железо, толстостенная труба.

Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.

  1. Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
  2. Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
  3. Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.

Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.

Процесс сборки теплового насоса «Френетта» своими руками: чертежи

Сначала в корпусе для труб отопления проделываются два отверстия специально для труб отопления. Стержень с резьбой устанавливается по центру корпуса. На эту резьбу навинчивайте гайку, ставьте диск, потом навинчивайте следующую гайку и пр. И так монтаж дисков продолжается до полного заполнения корпуса.

Желая сократить расходы на отопление своего жилища, немало домовладельцев сумели сделать тепловой насос Френетта своими руками

Потом в систему заливается масло, к примеру, хлопковое. Корпус закрывается и фиксируется на стержень. К проделанным отверстиям подводите трубы радиатора. Электродвигатель присоединяете к центральному стержню, он гарантирует вращение. Прибор можно включить в сеть и проверить его работу.

Выбор теплового насоса «Френетта» (видео)

Для чего нужен гидроударный насос? Самое простое использование насоса «Френетта» – комнатный обогреватель. Им можно отапливать гараж, баню или какое-то другое помещение. Но в большом доме использовать его советуют в комплекте с популярной системой теплый пол. Удачного конструирования!

  • Автор: admin
  • Распечатать

Оцените статью:

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

(1 голос, среднее: 1 из 5)

Поделитесь с друзьями!

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: