Как сделать реактивный двигатель своими руками

Пилотирование самолетов стало увлечением, объединившим взрослых и детей со всего мира. Но с развитием данного развлечения развиваются и движители для мини самолетов. Самый многочисленный двигатель для самолетов такого типа является электрический. Но с недавних пор на арене двигателей для RC авиамоделей появились реактивные двигатели (РД). Они постоянно дополняется всевозможными инновациями и придумками конструкторов. Задача перед ними стоит довольно сложная, но возможная. После создания одной из первых моделей уменьшенного двигателя, которая стала значимой для авиамоделирования, в 1990-х годах изменилось многое. Первый ТРД был 30 см в длину, около 10 см в диаметре и весом в 1,8 кг, но за десятки лет, у конструкторов получилось создать более компактную модель. Если основательно взяться за рассмотрение их строения, то можно поубавить сложностей и рассмотреть вариант создания собственного шедевра.

Устройство РД

части мини турбореактивного двигателя

  • Вал;
  • Диффузор;
  • Колесо турбины;
  • Камера сгорания;
  • Компрессор;
  • Статор;
  • Конус сопла;
  • Направляющий аппарат;
  • Подшипники;
  • Сопло приема воздуха;
  • Топливная трубка и многое другое.

Принцип работы

В основе строения турбированного двигателя лежит вал, который крутится при помощи тяги компрессора и нагнетает быстрым вращением воздух, сжимая его и направляя из статора. Попав в более свободное пространство, воздух сразу же начинает расширяться, пытаясь обрести привычное давление, но в камере внутреннего сгорания он подогревается топливом, что заставляет его расшириться еще сильней.

Единственный путь для выхода воздух под давлением — выйти из крыльчатки. С огромной скоростью он стремится на свободу, направляясь в противоположную от компрессора сторону, к крыльчатке, которая раскручивается мощным потоком, и начинает быстро вращаться, придавая тяговой силы всему движку. Часть полученной энергии начинает вращать турбину, приводя в действие компрессор с большей силой, а остаточное давление освобождается через сопло двигателя мощным импульсом, направленным в хвостовую часть.

Чем больше воздуха нагревается и сжимается, тем сильней нагнетаемое давление, и температура внутри камер. Образовываемые выхлопные газы раскручивают крыльчатку, вращают вал и дают возможность компрессору постоянно получать свежие потоки воздуха.

Виды управления ТРД

Существует три вида управления двигателем:

  • Электронный блок управления ТРД jet GR180

    Ручной. Самый простой из способов, который разгоняет двигатель электрическим статором до минимальных оборотов 3000 об/мин. При таких оборотах на свечу накала подается газ, и после воспламенения обороты увеличиваются вдвое. При стабильной тяге, подача газа отключается и начинается стабильная подача жидкого топлива. Недостаток управления в полном отсутствии информации о работе движка.

  • Автоматический. Запуск с тумблера на пульте управления. Стартер раскручивает вал до рабочих оборотов, пока электронный блок контролирует зажигание, старт и все остальные показатели. Для остужения движка при выключении блок прокручивает вал еще несколько раз.
  • Полуавтоматический. Система управления в полуавтоматическом режиме схожа с предыдущим видом. Она отличается только подачей газа с пульта управления. Все процессы, обороты и температуры электронный блок регулирует самостоятельно.

схема управлением двигателем турбореактивного двигателя

Виды двигателей для авиамоделей

Реактивные двигатели на авиамодели бывают нескольких основных типов и двух классов: воздушно-реактивные и ракетные. Некоторые из них устарели, другие слишком затратные, но азартные любители управляемых авиамоделей пытаются опробовать новый двигатель в действии. Со средней скоростью полета в 100 км/час авиамодели становятся только интересней для зрителя и пилота. Популярнейшие типы двигателя отличаются для управляемых и стендовых моделей, в силу разного КПД, веса и тяги. Всего типов в авиамоделировании немного:

  • Ракетный;
  • Прямоточный воздушно-реактивный (ПРВД);
  • Пульсирующий воздушно-реактивный (ПуРВД);
  • Турбореактивный (ТРД);

Ракетный используется только на стендовых моделях, и то довольно редко. Его принцип работы отличается от воздушно-реактивного. Основным параметром здесь выступает удельный импульс. Популярен из-за отсутствия необходимости взаимодействия с кислородом и возможности работы в невесомости.

Прямоточный сжигает воздух из окружающей среды, который всасывается из входного диффузора в камеру сгорания. Воздухозаборник в этом случае направляет кислород в двигатель, который благодаря внутреннему строению заставляет нагнетать давление у свежего потока воздуха. Во время работы, воздух подходит к воздухозаборнику со скоростью полета, но во входном сопле она резко уменьшается в несколько раз. За счет замкнутого пространства нагнетается давление, которое при смешивании с топливом выплескивает из обратной стороны выхлоп с огромной скоростью.

Пульсирующий работает идентично прямоточному, но в его случае сгорание топлива непостоянное, а периодичное. При помощи клапанов топливо подается только в необходимые моменты, когда в камере сгорания начинает падать давление. В своем большинстве реактивный пульсирующий двигатель совершает от 180 до 270 циклов впрыскивания топлива в секунду. Чтобы стабилизировать состояние давления (3,5 кГ/см2), используется принудительная подача воздуха с помощью насосов.

Турбореактивный двигатель, устройство которого вы рассматривали выше, обладает самым скромным расходом топлива, за счет чего и ценятся. Единственным их минусов является низкое соотношение веса и тяги. Турбинные РД позволяют развить скорость модели до 350 км/ч, при этом холостой ход двигателя держится на уровне 35 000 оборотов в минуту.

РЕАКТИВНЫЙ ДВИГАТЕЛЬ ИЗ… БУМАГИ!

Обычно журнал «Моделист-конструктор» рассказывает на своих страницах о работающих конструкциях, прошедших необходимые испытания. Однако данный материал – исключение из правил, и мы предлагаем читателям самим поучаствовать в доводке весьма оригинальной идеи, пока еще не сделавшей последнего шага к успеху.

Добившись определенных положительных результатов в освоении техники радиоуправления, я приступил к осуществлению мечты, пожалуй, всей моей жизни, – созданию собственной конструкции радиоуправляемого самолета. Разобравшись по Интернету, насколько возможно, в новой технике, я заказал из Китая двигатель «аутраннер» и регулятор к нему. Но пока мои покупки доставлялись, произошло одно важное событие…

Государственная Дума приняла закон об обязательной регистрации летательных аппаратов массой более 250 граммов! Интересовались ли когда-нибудь эти горе-законодатели правилами соревнований по авиамоделизму, и какие международные органы их устанавливают? Знакомы ли они с техникой разных соревновательных классов? Это все вопросы риторические, конечно, поскольку вес даже учебного кордового «фанероида» гарантировано превышает указанную величину.

Тогда может быть, моделистам стоит действительно начать регистрировать свои модели? Но как быть, если многие из них, особенно у новичков, живут всего один полет. А что до нынешних «электричек», то с ними может не быть и его, поскольку у приобретенных в случайных источниках моторов, винтов, аккумуляторов просто не окажется достаточной тяги, чтобы оторвать аппарат от земли. Будут ли школьники бегать по инстанциям, чтобы оформить различные бюрократические бумажки? Наверняка за это придется еще и платить. А затем мучительно раздумывать над обломками: снимать их с учета или все-таки попробовать восстановить?

В результате, в сколько-нибудь серьезных классах авиамоделизм в ближайшем будущем законно сможет существовать только как покупка готовых китайских игрушек из легчайших материалов и интегральной радиоаппаратуры. А как техническое творчество, на доступных самоделках из реек и фанеры учащее молодых аэродинамике и конструкциям летательных аппаратов, он оказался фактически под запретом.

Знаю, что защитники закона начнут рассказывать нам сказки: «Вот принесет террорист беспилотник с бомбой на регистрацию, а мы его тут ка-а-ак схватим!» Однако подобные «отмазки» – далеко не новость, и уже более 30 лет, как предусмотрены в очень серьезных международных документах. Кроме того, интересно, как авторы закона представляют себе использование кордовой или резиномоторной модели для совершения теракта. Как говорил Михаил Задорнов: «Очень хочется представить себе сам процесс».

Словом, когда моя посылка пришла на почту, закон уже вступил в силу. Поэтому первым делом полученные мотор и регулятор отправились на весы: 85 граммов! Без винта, и без аккумуляторов, способных дать почти сотню ватт. Это был приговор моей электрической силовой установке… Я даже не стал тратить время, чтобы хотя бы разок запустить покупку, и сразу переключил свое внимание на пульсирующие воздушно-реактивные двигатели.

ПуВРД – вещь в моделизме известная, достаточно вспомнить такие конструкции, как GADO-300 или РАМ-1. Последний даже попал на плакат «От моделей ученических – до кораблей космических!» Времена, правда, были другие.

На первый взгляд, идея использования реактивного двигателя кажется бесполезной в нынешних условиях. Ведь известные конструкции весят около 300 г, требуют сложных станочных работ, сварки, жаропрочных сталей. Плюс необходим источник сжатого воздуха и высокого напряжения для запуска. Тем не менее, мною было сформировано «безумное» техзадание со следующими особенностями.

1. Технологичные прямоугольные формы каналов входной части

2. Основной материал корпуса двигателя… бумага! Ведь всем известна пиротехника с бумажными оболочками, выдерживающими немалые тепловые и механические нагрузки. Да, корпус, скорее всего, окажется одноразовым, но его наиболее сложная деталь – топливный модуль может использоваться многократно.

3. Запуск – прокачкой воздуха обычной резиновой грушей.

4. Доступность материалов, низкие требования к точности изготовления и низкая трудоемкость. Фактически, двигатель большей частью изготавливается из содержимого мусорного ведра!

5. Отсутствие дефицитных и тяжелых заводских свечей зажигания.

6. Масса – не более 50 г.

Первым отечественным серийным реактивным двигателем, который выпускался в 1960-х годах, был воздушно-реактивный двигатель РАМ-1. В основном он использовался для установки на скоростных кордовых моделях самолетов и моделях глиссеров. Конструкция РАМ-1 проста и количество его деталей невелико. Головка обтекаемой формы состоит из корпуса, в котором спереди находится диффузорная часть жиклера и проходных каналов. Каждый лепесток клапана плотно закрывает одно проходное отверстие. Вся головка заключена в капот, а ее задняя часть имеет наружную резьбу, которая ввинчивается в корпус камеры сгорания.

Труба двигателя состоит из камеры сгорания, реактивного сопла и резонансной выхлопной трубы. Все они соединены точечной электросваркой. Корпус двигателя изготовлен из жаростойкой нержавеющей стали толщиной 0,2 мм, головка из дюралюминия. Топливо в двигатель поступает в виде смеси паров бензина с воздухом. Воспламенение – от запальной свечи. Разрежение, создаваемое при движении воздуха в узкой части диффузора, приводит к тому, что топливо самостоятельно поднимается из бачка по трубопроводу к жиклерным отверстиям, а выходя из них, топливо смешивается с воздухом.

Для запуска двигателя необходимо убедиться в непрерывной подаче электрического тока, наличии искры между электродами свечи и поступлении топлива, после чего следует направить струю воздуха от насоса под отверстие жиклера. Как только двигатель заработает, зажигание нужно отсоединить.

Нормальная работа РАМ-1 сопровождается выделением большого количества тепла (стенки корпуса накаляются докрасна), ровным высоким звуком и длинным голубым «языком» пламени выхлопных газов. Красное или оранжевое пламя означает, что топлива поступает слишком много – нужно понизить уровень горючего. И наоборот, если пламени почти нет, а выхлопы резкие и звонкие, значит смеси недостаточно – надо повысить уровень топлива. Остановка двигателя осуществляется перекрыванием подачи горючего.

По материалам книги «Авиамодельные двигатели», О. К. Гаевский, 1958 г.
Схема двигателя РАМ-1 и пример его установки на палубе модели глиссера Использование двигателя РАМ-1 на кордовой модели самолета (фото https://forum.rcdesign.ru)
ОТ СЛОВ – К ДЕЛУ!

Работы над двигателем продолжались более года, свидетельством чему стала эта ни на что не похожая конструкция. Но начну с «телеграфного» напоминания принципов действия ПуВРД. Бензо-воздушная смесь воспламеняется искрой в рабочей камере. Продукты сгорания выбрасываются через длинную выхлопную трубу, создавая реактивную тягу. Инерция потока газа приводит к тому, что он продолжает двигаться назад по трубе и после вспышки. Это создает разрежение в рабочей камере, которое открывает клапаны. Происходит всасывание свежей порции смеси, после чего цикл повторяется. Электрическая система зажигания требуется только при запуске. В камере работающего двигателя быстро появляются раскаленные (а в нашем двигателе – и тлеющие!) части, обеспечивающие дальнейшее зажигание.

Основная часть корпуса предлагаемого двигателя изготавливается из ватмана, после чего она оклеивается в 3-4 слоя обычной газетной бумагой на огнестойком силикатном клее. Конструкция вроде кажется устрашающей с точки зрения безопасности. Однако практика показала, что прочности такого корпуса более чем достаточно, чтобы выдерживать давление вспышки. А бесконтрольное горение в рабочей камере невозможно из-за малого количества находящегося там воздуха.

Остальные части конструкции опишу в порядке уже успешно решенных технических проблем.
Самодельный реактивный двигатель: 1 – бензобак (белая жесть); 2 – распылительная трубка; 3 – заливная горловина; 4 – верх входной части канала (бумага); 5 – канал карбюратора (белая жесть); 6 – клапанная решетка (фанера толщиной 3 мм); 7 – клапан (Al-жесть); 8 – рабочая камера (бумага); 9 – трубка наддува (термоусадочная трубка); 10 – выхлопная труба (бумага); 11 – патрубок наддува; 12 – уголок крепления патрубка (бумага); 13 – свеча зажигания; 14 – отражатель (фольга); 15 – выемка; 16 – внешняя стенка канала карбюратора

Клапаны

Обратное движение клапанов плюс утечки из-за невысокой точности их изготовления приводят к тому, что при вспышке задняя часть каналов карбюраторов заполняется выхлопными газами. Поэтому импульс всасывания должен быть очень мощным, чтобы прокачать эту грязь и далее всосать свежую смесь в достаточном объеме. Поэтому длину выхлопной трубы пришлось сделать даже большей, чем у известных, более мощных конструкций. Зато импульс всасывания оказался настолько сильным, что если бы на входе не было суживающихся каналов карбюратора, то он бы деформировал клапаны (проверено!).

Классические конструкции двигателей используют для клапанов тонкую пружинную сталь, и я очень гордился тем, что нашел ее источник – лезвия для безопасной бритвы. Но такие клапаны, похоже, оказались «туговаты». Поэтому я перешел на их изготовление из стенок алюминиевых банок из-под напитков. При сборке двигателя клапаны сначала «прихватываются» клеем «Момент» за нижнюю поперечину к фанерной клапанной решетке, а затем, при установке клапанной решетки, заливаются там силикатным клеем.

Также довольно скоро я пришел к идее наклонной клапанной решетки. Ведь клапаны – это плоские пружины, а их недостаток – небольшое, по сравнению с длиной, перемещение. Наклонное расположение клапанной решетки также улучшает аэродинамику, как для потоков газа внутри двигателя, так и с точки зрения его внешних форм.

У основания клапанов имеется застойная зона, создающая завихрения и неопределенности в направлении течения смеси. Ее выключение с помощью выемки в корпусе дало благоприятные результаты.

СНАБЖЕНИЕ БЕНЗИНОМ

Теоретически мною рассматривались несколько систем снабжения двигателя топливом, а именно: 1 – простейшие карбюраторы; 2 – естественное испарение бензина с развитой пористой поверхности; 3 – принудительное испарение бензина электрическим нагревателем; 4 – разбрызгивание бензина вращающимся от микромоторчика диском. Эксперименты проводились по первым трем пунктам, и ни один из них не оказался совсем уж безнадежным. Но я все же остановился на первом, так как в известных конструкциях двигателей применяется именно он. Кроме того, только этот вариант увеличивает подачу бензина, когда она нужна – при увеличении мощности и скорости модели.

Примитивных карбюраторов – два. Как я надеялся, это должно было облегчить «схватывание» двигателя после стартовой продувки одного из них. Также это должно было сделать работу двигателя более устойчивой в случае обратной вспышки в одном из карбюраторов.

Стоит отметить, что соприкосновение потока смеси с бумажными или фанерными деталями приводит к впитыванию некоторой части бензина, которая оказывается потерянной для рабочего процесса. Так как наклонные клапаны сильно отклоняют поток смеси вверх, я наклеил на верхнюю часть камеры отражатель из фольги. Это полезно и для ресурса двигателя (когда он заработает, конечно). С этой же целью концы распылительных трубок загнуты строго горизонтально. А металлические стенки каналов карбюраторов было решено совместить со… стенками топливного бака. Таким образом, имеющая дело с бензином часть двигателя превратилась в компактный топливный модуль, собранный на пайке из белой жести. Распылительные трубки идут от дна бензобака прямо в канал карбюратора.

В известных двигателях каналы карбюратора имеют круглое сечение, что требует токарных работ. В «Саяке» каналы – прямоугольные. Более того, две из четырех стенок канала – еще и плоские. Представляете, как это упрощает технологию! Каналы имеют закраины, вставляющиеся в отверстия клапанной решетки, что фиксирует топливный модуль и уменьшает соприкосновение потока смеси с фанерой. И только верхняя часть каналов карбюраторов перед распылителями сделана из бумаги.

Наружные стенки каналов выполнены из 3-мм фанеры (можно использовать пластик). Благодаря тому, что верхние и нижние стенки каналов плоскопараллельные, наружные стенки можно двигать, изменяя сечение канала, а, следовательно, регулируя и состав смеси.

Обратный заброс некоторой части выхлопных газов через клапаны в карбюратор может привести еще и к вытеснению бензина из распылительных трубок, что дополнительно увеличивает требования к всасываемому объему. В большой авиации в таких двигателях применялись обратные клапаны в топливной системе. Но в наших микроскопических объемах они бесполезны, да и трудновоспроизводимы. Единственный выход – противопоставить давлению прорвавшихся газов… это же самое давление, но со стороны бензобака. Так в двигателе появился патрубок наддува на выходе, соединенный с верхней частью бака. Патрубок приклеивается уголками из бумаги в несколько слоев на силикатном клее.

Задержка давления на удвоенной длине двигателя приводит к тому, что импульс наддува поступает в бак не во время вспышки, а как раз тогда, когда и требуется подача топлива. Именно после этого усовершенствования топливо, наконец-то, стало поступать в достаточных количествах. Дугообразно изогнутые отрезки хорошо паяющихся металлических трубок можно приобрести в магазинах товаров для рукоделия. Для распылительных трубок используются заготовки диаметром 1,5 мм, для системы наддува – диаметром 2,5 мм. Заливной горловиной служит припаянная к отверстию в баке гайка М2,5. Бак заправляется шприцем, после чего в горловину вкручивается винт. Затем включается зажигание, к входу одного из карбюраторов приставляется резиновая груша и подается поток воздуха для запуска. Но, внимание! Не отпускайте грушу, не отведя ее от карбюратора, во избежание всасывания взрывоопасной бензовоздушной смеси.

РЕГУЛИРОВКА ТОПЛИВНОЙ СИСТЕМЫ

Опытным путем мною был подобран диаметр распылителей в 0,4 мм. Делаются они просто – в конец трубки вставляется обмоточный провод соответствующего диаметра и обжимается плоскогубцами. Сечение каналов каждого из карбюраторов для двигателей данной размерности и конструкции не должно быть больше, чем 5×7 мм, иначе не произойдет подсасывания бензина. Наружные стенки каналов удобнее вклеивать на прозрачном «Моменте». Клей этот вязкий и хорошо герметизирует даже большие щели. Но в то же время он не очень прочный, так что переставить стенку будет нетрудно. Конечно, такая регулировка не очень удобна. Но можно использовать также пережатие трубки наддува для уменьшения подачи бензина.

Оптимальная смесь дает очень громкую и звонкую вспышку. Глухая вспышка с выбросом пламени на выходе двигателя – свидетельство переобогащенной смеси. А глухая вспышка без выброса пламени сообщает о том, что смесь нормальная, но плохо перемешанная (такое было характерно для систем с испарением бензина электронагревателем).

Щелчки искр зажигания также несут информацию. Звонкие звуки говорят, что камера двигателя заполнена воздухом. В заполненной смесью или выхлопными газами они глуше.

Судя по максимально достигнутому результату (о нем – ниже), система питания двигателя налажена удовлетворительно.

ЗАЖИГАНИЕ

Основой для системы зажигания послужила батарейная газовая зажигалка. Свечой же служит клинышек из стеклотекстолита, по краю которого проходит U-образная дорожка фольги. На конце его сделан пропил – это искровой промежуток. Экспериментально выявлено, что свеча может быть вставлена только в боковую стенку. Верхняя стенка быстро покрывается копотью или обугливается, что приводит к утечке искры на это углеродистое покрытие. Внизу же возможно попадание бензина с его протечкой наружу через прорезь для свечи и риском пожара.

Работа двигателя сильно зависит от положения свечи. Двинув ее вперед к клапанной решетке, мы увеличиваем вероятность «схватывания» двигателя даже при недостаточном всасывании. Но мощность вспышки уменьшится из-за того, что вспышка произойдет раньше, чем камера в должной мере заполнится смесью.

РЕЗУЛЬТАТЫ
Внешний вид экспериментальной версии самодельного реактивного двигателя из бумаги
В одной из серий экспериментов мне удалось получить надежные вспышки при каждой прокачке воздуха. Однажды даже была повторная вспышка. Правда, слишком слабая, чтобы вызвать следующие. Но даже при этих одиночных вспышках двигатель ощутимо подавался вперед, что свидетельствует о потенциально высокой тяге. Общий вес же заправленного двигателя без системы зажигания составил феерические 40 граммов! Однако для дальнейшей самостоятельной работы двигатель «не схватывает».

По-видимому, конфигурация факела смеси при стартовой продувке и при самостоятельном всасывании сильно различаются и искровое зажигание в одной точке не обеспечивает работу во всех режимах.

Возможно, я поставил перед собой слишком высокую планку в смысле доступности и технологичности этого мотора, и для получения работоспособной конструкции требуется частичный возврат к более традиционным решениям. Но я надеюсь, что-то из моих идей и наработок пригодится, и авиамоделисты получат силовую установку неслыханной легкости, простоты в изготовлении и дешевизны. Предлагаю читателям, имеющим практический опыт эксплуатации и создания модельных ДВС, подключиться к этой работе.

Александр ЛИСОВ

Рекомендуем почитать

  • АВТО АККУМУЛЯТОРЫ (ПЕРЕРАБОТКА) Ежедневно мы пользуемся огромным количеством вещей и уже практически перестали их замечать. Но оказывается в производстве незначительных на первый взгляд вещей кроется масса…
  • КОПАЕТ БЕЗ ПОТЕРЬ Конструкцию, о которой пойдет речь, можно было бы назвать картофелеуборочным комбайном, так как состоит она из нескольких относительно самостоятельных агрегатов. Предназначена…

Технические характеристики

Важным параметром, заставляющим авиамодели летать, является тяга. Она обеспечивает хорошую мощность, способную поднимать в воздух большие грузы. Тяга у старых и новых двигателей отличается, но у моделей, созданных по чертежам 1960-х годов, работающих на современном топливе, и модернизированных современными приспособлениями, КПД и мощность существенно возрастают.

В зависимости от типа РД, характеристики, как и принцип работы, могут отличаться, но всем им для запуска необходимо создать оптимальные условия. Запускаются двигатели при помощи стартера — других двигателей, преимущественно электрических, которые прикрепляются к валу двигателя перед входных диффузором, либо запуск происходит раскручиванием вала с помощью сжатого воздуха, подаваемого на крыльчатку.

турбореактивный двигатель jet GR180

На примере данных из технического паспорта серийного турбореактивного двигателя GR-180 можно увидеть фактические характеристики рабочей модели: Тяга: 180N при 120 000 об/мин, 10N при 25 000 об/мин Диапазон оборотов: 25 000 — 120 000 об/мин Температура выхлопного газа: до 750 C° Скорость истечения реактивной струи: 1658 км/ч Расход топлива: 585мл/мин (при нагрузке), 120мл/мин (холостой ход) Масса: 1.2кг Диаметр: 107мм длина: 240мм

Как сделать правильный капитальный ремонт двигателя, чтобы он был лучше нового.

Большинство водителей, отдавая двигатель своего автомобиля в какое нибудь СТО для капитального ремонта, заранее знают, что отремонтированный мотор будет всё же несколько хуже нового, и ресурс его будет естественно меньше. Ведь многие рассуждают так — «новый есть новый». Но очень мало водителей знают, что если сделать ПРАВИЛЬНЫЙ капитальный ремонт двигателя, то он «пробежит» намного больше нового серийного заводского мотора.

А что значит правильный капремонт и какой он должен быть? Об этом большинство водителей и не подозревают и спокойно отдают свой двигатель в сервис, надеясь, что там якобы мастера всё сами знают. Только вот впоследствии, водители удивляются малому ресурсу отремонтированного двигателя, и грешат на некачественные запчасти. В этой статье мы подробно разберём, что значит правильный капремонт двигателя, и возможно после прочтения этой статьи, многие водители начнут более внимательно выбирать ремонтников и ремонтную мастерскую, или же всё таки начнут ремонтировать двигатель своими силами.

Я уже писал о ремонте двигателей в этой, вот этой ну и вот в этой статьях, в которых я описал азы обычного капремонта двигателей автомобиля и японского мотоцикла и желающие могут кликнуть и почитать. Но кто хочет СУЩЕСТВЕННО увеличить послеремонтный пробег (ресурс) двигателя своего мотоцикла или автомобиля, то советую читать дальше.

Так как же осуществить такой капитальный ремонт своего отработанного двигателя, чтобы он стал лучше нового заводского? Да не так уж и сложно, если принять во внимание то, что серийное производство двигателей, это обычный конвеерный поток, в котором серийным деталям двигателя не уделяют должного внимания, это просто не реально.

Ну а ремонт двигателя, даже поставленный на поток, в какой то хорошо оснащённой мастерской — это искусство, потому что для каждого двигателя нужен индивидуальный подход. Например при деффектовке деталей, при которой каждая деталь тщательно изучается, чуть ли не под микроскопом, а иногда и дорабатывается специалистами и становится лучше новой детали.

В некоторых грамотных зарубежных мастерских, капитальный ремонт любого двигателя, плавно переходит в его тюнинг, то есть доводку серийных деталей до совершенства. И не смотря на то, что такой ремонт дороже обычного (ведь ручной труд всегда дороже), спрос на него всегда большой и клиенты стоят в очереди.

Потому что отремонтированный таким способом двигатель, во первых намного мощнее и долговечнее нового серийного мотора, а во вторых он ещё и дешевле нового серийного мотора. Ведь большинство самых дорогих и трудоёмких операций, делаются только на заводе, при производстве двигателя с нуля.

И если даже зарубежные заводские (серийные) двигателя при ремонте нуждаются в доводке и усовершенствовании, то что говорить про наши отечественные заводы, которые работают в условиях низкой оплаты труда рабочим и постоянной нехватки средств на усовершенствование серийного производства. Где даже крепёжные болты сидений забиваются молотком ?!?!

И в целях экономии времени (а время как известно это деньги) на большинстве отечественных автозаводов, намеренно пренебрегают некоторыми важными операциями. Например каждый инженер или металло-эксперт знает, что после отливки блока цилиндров, он должен отлежаться на полке определённое время.

И благодаря этой выдержке (старению), постепенно снижается внутреннее напряжение каждой детали, и при этом она может даже немного потерять форму (покоробиться). И только после того, как деталь принимает свою окончательную форму, только после этого её можно начинать обрабатывать (выбирать фрезой все отверстия и плоскости).

Так вот, на некоторых заводах выдержку блоков и головок не делают, и в итоге, после обработки отверстий и плоскостей, со временем деталь меняет форму, и уже все плоскости не параллельны, отверстия тоже (например постели подшипников валов). И плоскости разъёма блока и головки, после сборки будут не параллельны коленвалу, распредвалу и другим валам двигателя. Нетрудно догадаться, какой в итоге получится двигатель и каков будет его ресурс.

Из вышесказанного следует сделать вывод, что отечественный бэушный блок цилиндров или головка, которые проработали не одну сотню километров, ни чем не хуже, а даже лучше новых деталей, так как со временем произошла приработка сопряжений, осадка и детали в старении не нуждаются. И это большой плюс для того, чтобы после ремонта такие детали стали лучше новых заводских.

Не менее важная деталь, это цилиндры двигателя, а точнее их поверхность. Многим известно, что после расточки цилиндров (о расточке подробнее читаем тут), их поверхности (стенки) нужно отхонинговать (хотя современные станки позволяют производить хонинговку и без предварительной расточки).

То есть необходимо обработать стенки всех цилиндров специальным инструментом, называемым хоном, который после обработки превратит поверхность стенок цилиндров в шершавую, с очень мелкими канавками и выступами (если смотреть под микроскопом, как на рисунке 1). Большинство водителей знают, что благодаря мельчайшим канавкам на поверхности цилиндров лучше удерживается моторное масло (для смазки поршней и колец).

Так вот, для сравнения и для дальнейшего размышления, приведу ещё один пример, объясняющий почему у отечественных двигателей (да и у зарубежных тоже — после нашего ремонта) такой маленький пробег (у новых моторов) и послеремонтный пробег тоже. А всё дело в том, что на наших отечественных автомобильных заводах, да и в 95% всех ремонтных мастерских, применяют для хонинговки цилиндров алмазные абразивные бруски.

На зарубежных же заводах и ремонтных мастерских, никогда не пользуются такими брусками и применяют безобразивные бруски, которые следует менять в несколько десятков раз чаще, чем алмазные абразивы. А нашим заводам и мастерским главное что? Да то, что абразивный брусок остаётся пригоден для работы даже после тысячи отхонингованных блоков, ведь какая получается экономия?! И плевать на то, что ресурс мотора снизится в десятки раз, зато производство дешёвое.

Но почему же абразивные бруски для хонинговки не применяют за рубежом и от этого ресурс их двигателей намного больше? Да потому что при обработке поверхности цилиндра таким бруском, частицы абразива внедряются (шаржируются) в металлическую поверхность стенок цилиндра, а затем при работе двигателя, «съедают» его поршни с кольцами, и в итоге происходит быстрый износ поршневой.

А безобразивные бруски, которые применяют за рубежом, и которые намного быстрее образивных изнашиваются, изготавливают из достаточно мягких сплавов, и при работе они как бы не сколько срезают поверхность стенки цилиндра, а сколько давят и выглаживают её. В итоге, на металлической поверхности стенки цилиндра образуется очень тонкий слой, работающий не как абразив, а примерно как твёрдая смазка, существенно сокращающая износ цилиндров и поршней (и уменьшающая трение).

Кстати, если кто не знает, за рубежом уже давно забыли что такое ремонтные кольца и не применяют их. Зачем, когда на современных зарубежных машинах (например свежие Мерседесы), при правильном изготовлении блока мотора (а на некоторых никасилевое покрытие) и современном методе изготовления поршневых колец, нет необходимости менять кольца, и «проходит» двигатель без замены колец миллион километров пробега ! Кто хочет узнать об этом подробно, то кликаем здесь и читаем на здоровье.

Выше мы рассмотрели один из важных моментов правильной хонинговки цилиндров, который если вы примените при ремонте своего двигателя, то существенно увеличите его ресурс. Но существуют и другие важные моменты. Не все водители и даже ремонтники знают, что после установки блока на двигатель и затяжки его головки, геометрическая форма цилиндров немного меняется, так как металл есть металл. То есть при обжатии цилиндр (или цилиндры) перестаёт быть строго цилиндрическим, даже если его изготовили очень точно и до обжатия он был таким.

Правильная хонинговка цилиндра. 1 — блок цилиндров, 2 — алюминиевая плита с отверстиями, вместо головки, 3 — хон с безабразивными брусочками.

А это значит, что и обрабатывать при ремонте любой цилиндр, нужно ОБЖАТЫМ примерно так же, как он будет обжат на двигателе после ремонта. Проще говоря, нужно изготовить из толстой плиты (или из старой головки — см. рисунок 2) плиту, с отверстиями под хон и под крепёжные болты, которые обожмут цилиндры так же как и на двигателе (с таким же положенным моментом). После расточки цилиндров и отжатия болтов (и снятия плиты и блока), геометрическая форма отремонтированных цилиндров, тут же немного нарушится.

Но теперь остаётся только собрать и установить на отремонтированный таким способом блок штатную головку двигателя и обжать весь бутерброд положенным моментом, и геометрия расточенных цилиндров станет идеальной ! Цилиндры отремонтированного таким способом двигателя, станут лучше новых заводских! Ведь при серийном производстве двигателей на заводах, вышеописанную правильную технологию расточки и хонинговки вряд ли применяют (а если и применяют, то только на зарубежных престижных автомобилях).

Кстати, и в большинстве ремонтных мастерских, так правильно моторы тоже не ремонтируют, а если кто то из редких ремонтников и делает это, то его ещё надо поискать, чего вам очень советую. Ну и напоследок ещё один нюанс правильного ремонта.

Большинство ремонтных мастерских, при расточке цилиндров, главной (базовой) плоскостью считают нижнюю плоскость картера (там где поддон двигателя). Проще говоря, берут и ставят блок цилиндров на крепёжный стол станка, затем зажимают блок и начинают обработку. Но никто из расточников никогда не задумывается (а если и задумывается, то только когда делает свой двигатель), а точно ли параллельна нижняя плоскость блока оси коленчатого или распределительного вала?

И если даже при серийном производстве, особенно отечественном, и выполнили это важное условие (что с трудом верится), то от каждодневных нагрузок в процессе эксплуатации, это условие со временем нарушилось. И может быть даже всего на доли градуса, а может и больше, а кто это знает и кто проверяет ? Да всего лишь какие то единицы действительно грамотных мотористов.

В итоге, ось коленвала (да и распредвала тоже) оказываются не перпендикулярны стенкам цилиндра (осям цилиндров). И получается, что на шатуны двигателя постоянно будет давить пусть небольшая, но всё таки изгибающая сила. Кольца, поршни, да и стенки цилиндров будут изнашиваться неравномерно. К тому же между поршнями и стенками цилиндров, будет образовываться не правильная плёнка масла, а менее устойчивая клинообразная плёнка, которая будет постоянно выдавливаться из под трущейся пары (поршень-цилиндр).

Кстати, слой масла в виде клина, будет и между шейкой и вкладышем коленвала (см. рисунок 3). Результат всего этого — ускоренный износ и естественно малый ресурс двигателя.

Из вышесказанного следует сделать вывод, что прежде чем начинать обработку цилиндров блока, очень важно проверить постели коренных вкладышей (да и любых постелей) на их точную цилиндричность и соосность (точную перпендикулярность отверстий постелей к отверстиям цилиндров). И уже исходя от этого, правильно закреплять блок в станке и обрабатывать поверхность цилиндров.

При необходимости лучше не подкладывать под нижнюю плоскость блока пластины, если эта плоскость не перпендикулярна осям цилиндров, а лучше шлифануть эту плоскость на станке, чтобы исправить дефект. И после этого можно буде уже спокойно укладывать блок на стол расточного станка и растачивать, или хонинговать цилиндры (опять же правильным — безабразивным хоном). Настоящие мотористы профессионалы (к сожалению чаще за рубежом) делают именно так.

И если даже кто то не вс состоянии сделать правильный капремонт двигателя своими силами (не у каждого ведь есть станочный парк в собственной мастерской), то по крайней мере вы, прочитав эту статью, сможете уже адекватно контролировать мотористов, которым вы доверите ремонт своего двигателя, а это важно.

Я надеюсь, если прочитав эту статью, вы сделаете капремонт своего двигателя, учитывая все нюансы, описанные здесь, то в итоге вы увидите очень интересные результаты такого ремонта, а именно: намного снизится угар и естественно расход масла, а так же выхлоп вредных веществ в атмосферу (может кому то это не важно, но мне да), чуть уменьшится расход топлива (ведь потери на трение уменьшатся), и существенно уменьшится скорость износа цилиндров, колец и поршней.

Ну, а самый главный прикол такого правильного капитального ремонта двигателя, это то, что ресурс вашего отремонтированного мотора, почти в два раза превысит ресурс абсолютно новенького заводского серийного двигателя; успехов всем!

Если эта статья вам полезна, то пожалуйста поделитесь ей в соц. сетях, нажав кнопки ниже. Спасибо.

Нравится

Использование

Основной сферой применения была и остается авиационная направленность. Количество и размер разных типов ТРД для самолетов ошеломляет, но каждый из них особенный и применяется при необходимости. Даже в авиамоделях радиоуправляемых самолетов время от времени появляются новые турбореактивные системы, которые представляются на всеобщий обзор зрителям выставок и соревнований. Внимание к его использованию позволяет существенно развивать способности двигателей, дополняя принцип работы свежими идеями.

Самым перспективным направлением использования мини ТРД — беспилотники для транспортировки товаров между городами и по миру.

Скачать чертежи авиамодельного турбо-реактивного двигателя.

Пример страницы с чертежами.

Пилотирование самолетов стало увлечением, объединившим взрослых и детей со всего мира. Но с развитием данного развлечения развиваются и движители для мини самолетов. Самый многочисленный двигатель для самолетов такого типа является электрический. Но с недавних пор на арене двигателей для RC авиамоделей появились реактивные двигатели (РД).

Они постоянно дополняется всевозможными инновациями и придумками конструкторов. Задача перед ними стоит довольно сложная, но возможная. После создания одной из первых моделей уменьшенного двигателя, которая стала значимой для авиамоделирования, в 1990-х годах изменилось многое. Первый ТРД был 30 см в длину, около 10 см в диаметре и весом в 1,8 кг, но за десятки лет, у конструкторов получилось создать более компактную модель. Если основательно взяться за рассмотрение их строения, то можно поубавить сложностей и рассмотреть вариант создания собственного шедевра.

Установка и подключение

Установка реактивного двигателя и его подключение к системе — процесс сложный. В единую цепь необходимо подключить топливный насос, перепускные и регулировочные клапана, бак и температурные датчики. В силу воздействия высоких температур, обычно используются соединения и топливные трубки с огнеупорным покрытием. Закрепляется все самодельными фитингами, паяльником и уплотнениями. Так как трубка может быть по размеру с головку иголки, соединение должно быть плотным и изолированным. Неправильное подключение может привести к разрушению или взрыву двигателя. Принцип соединения цепи на стендовых и летающих моделях отличается и должен выполняться согласно рабочим чертежам.

Преимущества и недостатки РД

Преимуществ у всех типов реактивных двигателей множество. Каждый из типов турбин применяется для определенных целей, которым не страшны его особенности. В авиамоделировании использование реактивного двигателя открывает двери в преодоление высоких скоростей и возможности маневрирования независимо от многих внешних раздражителей. В отличие от электро- и ДВС реактивные модели более мощные и позволяют проводить самолету в воздухе больше времени. Выводы Реактивные двигатели для авиамоделей могут иметь различную тягу, массу, структуру и внешний вид. Для авиамоделизма они всегда останутся незаменимы из-за высокой производительности и возможности применять турбину с использование разного топлива и принципа работы. Выбирая определенные цели, конструктор может корректировать номинальную мощность, принцип образования тяги и т. д., применяя разные виды турбин к разным моделям. Работа двигателя на сгорании топлива и нагнетании давления кислорода делает его максимально эффективным и экономичным от 0,145 кГ/л до 0,67 кГ/л, чего всегда добивались авиаконструкторы.

Самодельный лодочный мотор

Нужда в переделывании обычной лодки в моторную может возникнуть по разным причинам. Но вот как это сделать, если бюджет ограничен и денег на покупку уже готового мотора не хватит. Существует множество вариантов, помогающих сделать из подручных материалов, имеющихся в каждом доме, вполне рабочий лодочный мотор.

Мотор, сделанный с использованием триммера

Прежде чем начать делать самодельный мотор для лодки необходимо определиться с выбором основы, из которой будет взят двигатель и прочие важные для сборки детали. В данном случае будет использоваться триммер. Помимо этого варианта существует еще множество, в которых используется все, даже обыкновенный шуруповерт.

Однако газонокосилка выигрывает по многим параметрам, а конструкция ее двигателя наиболее близка к конструкции покупного лодочного мотора. Это доказывают чертежи, которые многие мастера сравнивали, перед тем как делать выбор, что брать за основу самодельного двигателя для лодки. И так рассмотрим:

  • Двигатель, который сэкономит огромное количество топлива (так как газонокосилка часто используется). Более того, он может быть четырехтактным, как и на обычных моторных лодках. Однако это бывает очень редко и в основном он двухтактный
  • Во всех ручных бензиновых косилках используется пластиковый и полупрозрачный бак, позволяющий постоянно следить за количеством топлива в нем
  • Внутренняя часть конструкции предрасполагает к тому, что ее можно легко переделать под лодочный мотор, не сильно напрягаясь

Основной сложностью при переделке триммера является то, что двигатель косилки не всегда сможет осилить передвижения по воде. Связано это, прежде всего с разной технологией работы каждого из двигателей.

На бензиновой косилке он имеет большое количество оборотов из-за малого крутящего момента. Для лодочного же нужна абсолютно противоположное. Однако это легко исправляется. Но для этого обязательно необходимы инструменты (они имеются у каждого) и чертежи.

Основной перечень инструментов необходимых для работ:

  • Сам триммер – основа будущего мотора лодки. Так как чаще всего самодельный мотор делается для резиновой лодки, имеющий небольшой вес и размер, мощность триммера может быть небольшой – около 0,8 кВт. Даже такая небольшая мощность сможет обеспечить среднюю человеческую скорость 5-7 км в час. Однако если мотор делается для более тяжелой и массивной лодки, следует выбирать косилки с более высокой мощностью
  • Материал, который идеально подойдет для изготовления винта (это можно сделать в домашних условиях), чаще всего им выступает дюралюминий толщиной около 2 мм
  • Тиски или любой другой инструмент, позволяющий закреплять объекты (в данном случае мотор на лодку)
  • Аппарат для сварки металла (любой, но лучше полуавтоматический)

Процесс изготовления

Создание двигателя для лодки на основе вышеперечисленных материалов может проходить по-разному. Либо все основные составляющие, которые должны присутствовать покупаются, либо делаются своими силами (не вызывает сложности) с использованием подручных материалов

Должны быть произведены расчеты, по которым затем необходимо составить чертеж винта. Делается он исходя из многих параметров, основными являются размер и масса лодки.

Проще и лучше сделать мотор, если выбирать модель газонокосилки, которая имеет прямой вал. В противном случае потребуется много сил и затрат на то, чтобы переделать изогнутую штангу под прямую.

Если винт делается своими руками исходя из расчетов и чертежа, то кромки необходимо хорошо заточить (почти под острый угол). Лопасти винта обычно делаются изогнутыми приблизительно на 10 мм. Так как материал изготовлению все тот же дюралюминий, можно, в случае с плохой работой винта, спокойно его подгибать, так как материал очень эластичный.

Насаживается винт на место триммерной головки, которую снимают при разборке косилки. Обязательно использование насадки в виде кольца, так как возможно так, что лопасти на высоких оборотах могут повредить или вовсе порвать материал лодки (если она резиновая). Переходники, позволяющие связать основной вал двигателя с винтом, можно приобрести в интернете. Стоят они очень дешево.

Стартер на веревке вполне можно использовать и от газонокосилки. Однако, если им неудобно заводить, можно использовать скоростник от старого велосипеда. После всей сборки достаточно закрепить струбциной получившуюся конструкцию на саму лодку.

Быстрая сборка мотора для лодки с использованием бензопилы

Использование двигателя от бензопилы для изготовления лодочного мотора является весьма эффективным решением. Сначала, на этапе ее разборки, требуется вытащить шину и насос, подающий масло на цепь, рычаг, позволяющий регулировать скорость и бензобак (не подойдет из-за конструкции мотора).

С использованием материала текстолита необходимо изготовить место крепления для основной части двигателя, в которой будет находиться стартер и весь механизм сцепления, к другой части двигателя (такая конструкция позволит сделать работу двигателя наиболее эффективной).

В самую нижнюю часть всей конструкции необходимо вставить путем пресса втулку из стали, которая будет крепиться к дейдвуду. Дейдвуд будет изготовлен из весла для надувной лодки (стоит дешево), которое сделано из дюралюминия. Муфта, отвечающая за сцепление, должна присоединяться через специальный вал к редуктору.

Редуктор можно изготовить из составляющих частей шлифовальной машинки. Заполняется он маслом, используемым для смазки трансмиссии автомобиля. Крепление конструкции все так же осуществляет струбцина или тиски. Руль, осуществляющий маневры, можно сделать из дюралюминиевой трубы (оставшейся части весла).

За ручку газа, как и в случае с триммером может выступать скоростник от велосипеда. Винт, как основная часть мотора, может быть изготовлен так же, как и в случае с триммером, с использованием дюралюминия. При этом расчеты, проводимые для выяснения размеров винта, остаются такими же.

goldrybak.ru

То сделать? Купить или сделать своими руками

Данный вопрос не простой. Так как турбореактивные двигатели, будь они полномасштабными или уменьшенными моделями, но они технически сложные устройства. Сделать из — задача не из простых. С другой стороны мини ТРД производят исключительно в США или странах Европы, поэтому и цена у них в среднем 3000 долларов, плюс минус 100 баксов. Так что покупка готового турбореактивного двигателя вам обойдется с учетом пересылки и всех сопутствующих патрубков и систем 3500 долларов. Цену мощете сами посмотреть, достаточно загуглить «турбореактивный двигатель Р180-RX»

Поэтому в современных реалиях лучше подойти к этому делу следующим образом — что называется сделать своими руками. Но это не совсем верная трактовка, скорее отдать работу подрядчикам. Двигатель состоит из механической и электронной части. Компоненты для электронной части движителя покупаем в Китае, механическую часть заказываем у местных токарей, но для этого необходимы чертежи или 3D модели и в принципе механическая часть у вас в кармане.

Электронная часть

Контроллер поддержания режимов двигателя можно собрать на Arduino. Для этого нужен прошитый Arduino чип, датчики — датчик оборотов и датчик температуры и исполнительные механизмы, регулируемая электроникой заслонка подачи топлива. Чип можно прошить самому, если знаете языки программирования, либо обратиться на форум для ардуинщиков за услугой.

Механическая часть

С механикой все интереснее все запчасти в теории вам могут изготовить токаря и фрезеровщики, проблема вся в том, что для этого нужно их специально искать. Не проблема найти токаря, который изготовит вал и втулку вала, а вот все остальное. Самая сложная деталь в изготовлении — это колесо центробежного компрессора. Оно изготовляется либо отливкой. либо на 5 координатном фрезерном станке. Самый простой способ заполучить крыльчатку центробежного насоса это ее купить, как зап часть для турбонагнетателя ДВС автомобиля. И уже под нее ориентировать все остальные детали.

Как сделать простейший двигатель внутреннего сгорания своими руками?

Вы здесь

Оглавление:

В древние времена люди использовали животных для приведения в действие простейших механизмов. Позже для плавания на парусных суднах и для того чтобы заставить вращаться ветряные мельницы, делающие из зерна муку, стала использоваться сила ветра. Затем люди научились использовать силу течения речной воды для того, чтобы заставить вращаться водяные колёса, перекачивающие и поднимающие воду или приводящие в действие разнообразные механизмы.

Тепловые двигатели появились в далёком прошлом, в том числе и двигатель Стирлинга. Сегодня технологии значительно усложнились. Так, например, человечество изобрело двигатель внутреннего сгорания, который является довольно сложным механизмом. На основе ДВС в настоящее время работает большинство современных автомобилей и другой необходимой для человека техники. Функция, которую выполняет тепловое расширение внутри двигателя внутреннего сгорания, очень сложна, но без неё работа ДВС невозможна.

В механическом устройстве, называемом двигателем внутреннего сгорания, энергия сгорающего топлива преобразуется в механическую. Для того чтобы сделать двигатель внутреннего сгорания своими руками, необходимо знать основные принципы его действия.

Принцип действия ДВС

На сегодняшний день существуют разные виды двигателей, но для моделизма чаще всего используются:

  • Поршневые двигатели дизельного типа.
  • Двигатели, зажигаемые путём накала или искры.

Дизельные двигатели отличаются от искровых или калильных тем, что в первых возгорание горючего происходит при сильном сжатии газа в процессе движения поршня в цилиндре. А последние два типа двигателей требуют для возгорания уже сжатой смеси дополнительной энергии, для чего необходимо заранее нагреть калильную свечу или произвести искровой разряд.

Поршневые двигатели могут быть только двухтактными. Двигатели, которые зажигаются путём накала или искры, бывают и двухтактные, и четырехтактные.

Двухтактные двигатели осуществляют любой рабочий процесс в два такта, выполняемые за 1 оборот коленвала.

В первом такте осуществляется «всасывание-сжатие»: когда коленчатый вал вращается, поршень перемещается снизу вверх. В процессе его движения топливная смесь всасывается через золотник в картер, и в то же время в цилиндре сжимается предыдущая порция горючего.

Перед тем как завершается первый такт, в цилиндре воспламеняется горючая смесь, в результате чего значительно увеличивается давление в камере сгорания, которое способствует движению поршня вверх и вниз.

Во втором такте — «рабочем ходе-продувке» сгорающее топливо расширяется, что способствует развитию механической мощности, а свежая порция топлива, засосанная в цилиндр во время первого такта, сжимается.

После того, как поршень проходит около половины пути вниз, газы, образованные во время сгорания топлива, выталкиваются из цилиндра через специально открывающееся окно. А после того, как открывается перепускное окно, сжатое в картере горючее поступает в цилиндр, и тем самым вытесняет из него оставшиеся отработанные газы, то есть, происходит продувка.

Как сделать простейший двигатель внутреннего сгорания?

Устройство ДВС изучается в школе старшеклассниками. Поэтому даже подросток сможет сделать простейший двигатель внутреннего сгорания своими руками. Для его изготовления нужно взять:

  • Проволоку.
  • Лист картона.
  • Клей.
  • Моторчик.
  • Несколько шестерен.
  • Батарейку 9V.

Порядок изготовления:

  1. Сначала из картона следует вырезать круг, который будет играть роль коленчатого вала.
  2. Далее из картона для изготовления шатуна нужно вырезать прямоугольник размером 15х8 см, сложить его вдвое и затем — еще на 90˚. На его концах делаются отверстия.
  3. Далее из картонного листа изготовляется поршень с отверстиями для поршневых пальцев.
  4. Размер поршневых пальцев должен соответствовать размеру отверстия в поршне.
  5. Поршень закрепляется пальцем на шатуне, а его проволокой нужно прикрепить к коленвалу.
  6. В соответствии с размером поршня следует свернуть из картона цилиндр, а в соответствии с размером коленчатого вала — коробочку для самого коленвала.
  1. Далее следует взять шестерёнки и моторчик и собрать механизм вращения коленчатого вала таким образом, чтобы моторчик мог проворачивать коленчатый вал с поршнем и шатуном.
  2. Механизм вращения крепится к коленчатому валу, и он помещается в изготовленную коробочку. При этом вращающий механизм следует прикрепить к стенке коробочки.
  3. Далее в цилиндре размещается поршень и цилиндр склеивается с коробочкой.
  4. Теперь с помощью двух проводов (+ и —) моторчик соединяется с батарейкой, в результате чего поршень приходит в движение.

Как сделать маленький двигатель внутреннего сгорания из подручных средств?

Из следующего примера вы узнаете, как можно сделать двигатель внутреннего сгорания в домашней мастерской, не используя при этом станки и сложное оборудование.

  1. Для создания данного приспособления следует взять плунжерную пару, которую можно извлечь из топливного насоса трактора.
  1. Для изготовления цилиндра от плунжерной втулки была отрезана с помощью машинки утолщенная часть шлефа. Далее требуется прорезать отверстия для выхлопного и перепускного окон, а сверху припаять 2 гайки М6 для свечей зажигания. Поршень же вырезается из плунжера.
  1. Для изготовления картера используется жесть. Также к нему нужно припаять подшипники. Чтобы создать дополнительную прочность, следует взять ткань, пропитать её эпоксидной смолой и покрыть ею картер.
  1. Коленвал собран из толстой шайбы с двумя отверстиями. Одно отверстие, в которое нужно запрессовать вал, сделано в центре шайбы. Во второе отверстие, расположенное с краю, запрессовывается шпилька с одетым на неё шатуном.
  2. Катушка зажигания собирается по следующей схеме:
  1. Также можно использовать катушку от автомобиля или мотоцикла. Схема её подключения выглядит следующим образом:
  1. Свечу зажигания также можно изготовить самостоятельно, сделав для этого сквозное отверстие в болте М6. Для изготовления изолятора можно использовать стеклянную трубочку из-под термометра и приклеить её с помощью эпоксидной смолы. Трубочка также обёрнута в бумагу, пропитанную эпоксидной смолой.

Детали на двигателе расположены согласно следующему чертежу: Схема впускного клапана:
Схема карбюратора:

Схематический вид самого карбюратора: Как работает этот ДВС, можно посмотреть в следующем видео:

Бестактный ДВС замкнутого типа

Данный мини двигатель внутреннего сгорания своими руками работает на небольшом количестве жидкого топлива (20 г). Топливо, взрываясь в камере, моментально преобразуется в газ и значительно увеличивается в объёме. В результате создаётся избыточное давление, выталкивающее поршень и вызывающее вращение коленчатого вала на пол-оборота.

Затем этот же газ быстро преобразуется в горючую жидкость, уменьшаясь в объёме до первоначального состояния. В результате этого создаётся пониженное давление, втягивающее поршень назад, а коленчатый вал снова делает половину оборота.

Таким образом, в процессе одного оборота вала поршень совершает два рабочих хода.

Процесс бесконечен за счет постоянного перехода жидкости в газ и обратно. В такой замкнутой системе отсутствует как впрыск топлива, так и выхлоп газа. Составляют двигатель всего три узла:

  1. Камера с двумя секциями и поршень.
  2. Коленчатый вал и коробка передач.
  3. Зажигательная система.

Система запускается в действие аккумулятором, а далее можно использовать генератор. Для питания двигателя необходимо 12 Вольт, 4 Ампера.

Данный ДВС можно создавать с различными мощностями, он подойдёт для любого вида транспорта, передвигающегося по земле и по воздуху. Исключение составляют лишь реактивные самолёты.

На следующем видео представлена небольшая настольная рабочая модель, демонстрирующая эффект ДВС:


Кроме того, из обычного парового двигателя также можно создать подобный двигатель, работающий по принципу замкнутого типа. При этом пар и вода расходоваться не будут, поскольку водяной пар также быстро превращается в жидкость и обратно в пар в результате пропускания его через поле коронного разряда. К тому же, если пропустить пар сквозь колбу с охлаждённой водой, то в результате возникнет дополнительная тяга, вызванная изменением объёма среды и перепадом давлений. Данный метод позволит повышать низкий коэффициент полезного действия паровых двигателей в целом.

Видео о том, как сделать маленький двигатель внутреннего сгорания

А Вы уже пытались сделать двигатель внутреннего сгорания своими руками? Получилось ли у Вас? Расскажите об этом в комментариях.

www.rutvet.ru

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: